Bei der ISDN–Datenübertragung wird in Deutschland und Belgien auf der so genannten $\rm U_{\rm K0}$–Schnittstelle $($Übertragungsstrecke zwischen der Vermittlungsstelle und dem NTBA$)$ der MMS43–Code eingesetzt.
Die Abkürzung „MMS43” steht für "Modified Monitored Sum 4B3T".
Es handelt sich hierbei um einen 4B3T–Blockcode mit den vier in der Grafik gezeigten Codetabellen, die gemäß der so genannten „Laufenden Digitalen Summe” $($nach $l$ Blöcken$)$
- $${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$
zur Codierung benutzt werden. Zur Initialisierung wird ${\it \Sigma}_{0} = 0$ verwendet.
Die Farbgebungen in der Grafik bedeuten:
- Ändert sich die laufende digitale Summe nicht $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$, so ist ein Feld grau hinterlegt.
- Eine Zunahme $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$ ist rot hinterlegt, eine Abnahme $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$ blau.
- Je intensiver diese Farben sind, um so größer ist die Änderung der laufenden digitalen Summe.
Hinweise:
- Die Aufgabe gehört zum Kapitel "ISDN-Basisanschluss".
- Angaben zum MMS43–Code finden Sie im Kapitel "Blockweise Codierung mit 4B3T-Codes" des Buches „Digitalsignalübertragung”.
Fragebogen
Musterlösung
(1) Richtig sind die Aussagen 2 und 3:
- Die erste Aussage trifft nicht zu: Beispielsweise ergibt sich beim AWGN–Kanal ("nur additives weißes Gaußsches Rauschen") mit einem 4B3T–Code im Vergleich zum redundanzfreien Binärcode eine deutlich größere Fehlerwahrscheinlichkeit aufgrund der ternären Entscheidung.
- Der wesentliche Grund für die Verwendung eines redundanten Übertragungscodes ist vielmehr, dass über einen „Telefonkanal” kein Gleichsignalanteil übertragen werden kann.
- Auch die um $25 \%$ kleinere Schrittgeschwindigkeit $(1/T)$ des 4B3T–Codes kommt den Übertragungseigenschaften von Kupferleitungen (starker Dämpfungsanstieg mit der Frequenz) entgegen.
- Bei gegebener Leitungsdämpfung lässt sich deshalb mit dem 4B3T–Code eine größere Länge überbrücken als mit einem redundanzfreien Binärsignal.
(2) Die 4B3T–Codierung ergibt mit dem Initialwert ${\it \Sigma}_{0} = 0$:
- 1100 ⇒ „+ + +” ⇒ ${\it \Sigma}_{1} = 3$,
- 0100 ⇒ „ – + 0” ⇒ ${\it \Sigma}_{2} = 3$,
- 0110 ⇒ „– – +” ⇒ ${\it \Sigma}_{3} = 2$,
- 1010 ⇒ „+ – –” ⇒ ${\it \Sigma}_{4} = 1$.
⇒ Der gesuchte Amplitudenkoeffizient ist somit $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.
(3) Aus der Farbgebung der vorgegebenen Codetabelle kann man das folgende Markovdiagramm ermitteln.
- Daraus können die gesuchten Übergangswahrscheinlichkeiten abgelesen werden:
- $${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$
- $${\rm Pr}({\it \Sigma}_{l+1} = 2 \ | \ {\it \Sigma}_{l}=0) \ = \ 3/16 \underline{ \ = \ 0.1875},$$
- $${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=2) \underline{ \ = \ 0}.$$
(4) Richtig sind die Aussagen 2 und 3:
- Die erste Aussage ist falsch, was man an den Asymmetrien im Markovdiagramm erkennt.
- Dagegen gibt es Symmetrien bezüglich der Zustände „0” und „3” und zwischen „1” und „2”.
In der folgenden Berechnung schreiben wir anstelle von ${\rm Pr}({\it \Sigma}_{l} = 0)$ vereinfachend ${\rm Pr}(0)$. Unter Ausnutzung der Eigenschaft ${\rm Pr}(3) = {\rm Pr}(0)$ und ${\rm Pr}(2) = {\rm Pr}(1)$ ergeben sich folgende Gleichungen aus dem Markovdiagramm:
- $${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
- Aus der weiteren Bedingung ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$ folgt weiter:
- $${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
- Diese Berechnung basiert auf der Summe der ankommenden Pfeile im Zustand ${\it \Sigma}\hspace{0.05cm}_{l} = 0)$.
Man könnte auch die Gleichungen für die drei anderen Zustände angeben, die aber alle zum gleichen Ergebnis führen:
- $${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
- $$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
- $$ {\rm Pr}(3) \ = \ \frac{1}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm}.$$