Aufgabe 4.4: Maximum–a–posteriori und Maximum–Likelihood
Zur Verdeutlichung von "Maximum–a–posteriori" (MAP)– und "Maximum–Likelihood" (ML)–Entscheidung konstruieren wir nun ein sehr einfaches Beispiel mit nur zwei möglichen Nachrichten m0=0 und m1=1, die durch die Signalwerte s0 bzw. s1 dargestellt werden:
- s = s0=+1⟺m=m0=0,
- s = s1=−1⟺m=m1=1.
- Die Auftrittswahrscheinlichkeiten seien:
- Pr(s=s0)=0.75,Pr(s=s1)=0.25.
- Das Empfangssignal kann – warum auch immer – drei verschiedene Werte annehmen, nämlich
- r=+1,r=0,r=−1.
- Die bedingten Kanalwahrscheinlichkeiten können der Grafik entnommen werden.
Nach der Übertragung soll die gesendete Nachricht durch einen optimalen Empfänger geschätzt werden. Zur Verfügung stehen:
- der Maximum–Likelihood–Empfänger (ML–Empfänger), der die Auftrittswahrscheinlichkeiten Pr(s=si) nicht kennt, mit der Entscheidungsregel:
- ˆmML=argmax
- der Maximum–a–posteriori–Empfänger \rm (MAP–Empfänger); dieser berücksichtigt bei seiner Entscheidung auch die Symbolwahrscheinlichkeiten der Quelle:
- \hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} \big[ {\rm Pr}( s = s_i) \cdot p_{r |s } \hspace{0.05cm} (\rho |s_i ) \big ]\hspace{0.05cm}.
Hinweise:
- Die Aufgabe gehört zum Kapitel "Optimale Empfängerstrategien".
- Bezug genommen wird auch auf das Kapitel "Struktur des optimalen Empfängers".
- Die notwendigen statistischen Grundlagen finden Sie im Kapitel "Statistische Abhängigkeit und Unabhängigkeit" des Buches „Stochastische Signaltheorie”.
Fragebogen
Musterlösung
- {\rm Pr} ( r = +1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr} ( s_0) \cdot {\rm Pr} ( r = +1 \hspace{0.05cm}| \hspace{0.05cm}s = +1) = 0.75 \cdot 0.8 \hspace{0.05cm}\hspace{0.15cm}\underline { = 0.6}\hspace{0.05cm},
- {\rm Pr} ( r = -1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr} ( s_1) \cdot {\rm Pr} ( r = -1 \hspace{0.05cm}| \hspace{0.05cm}s = -1) = 0.25 \cdot 0.6 \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.15}\hspace{0.05cm},
- {\rm Pr} ( r = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 - {\rm Pr} ( r = +1) - {\rm Pr} ( r = -1) = 1 - 0.6 - 0.15 \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.25}\hspace{0.05cm}.
- Für die letzte Wahrscheinlichkeit gilt auch:
- {\rm Pr} ( r = 0) = 0.75 \cdot 0.2 + 0.25 \cdot 0.4 = 0.25\hspace{0.05cm}.
(2) Für die erste gesuchte Rückschlusswahrscheinlichkeit gilt:
- {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = +1) = \frac{{\rm Pr} ( r = +1 \hspace{0.05cm}|\hspace{0.05cm}s_0 ) \cdot {\rm Pr} ( s_0)}{{\rm Pr} ( r = +1)} = \frac{0.8 \cdot 0.75}{0.6} \hspace{0.05cm}\hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.
- Entsprechend erhält man für die weiteren Wahrscheinlichkeiten:
- {\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = +1) \hspace{-0.1cm} \ = \ 1 - {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = +1) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0}\hspace{0.05cm},
- {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = -1) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0}\hspace{0.05cm},
- {\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = -1) \hspace{0.05cm}\hspace{0.15cm}\underline {= 1}\hspace{0.05cm},
- {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{{\rm Pr} ( r = 0 \hspace{0.05cm}|\hspace{0.05cm}s_0 ) \cdot {\rm Pr} ( s_0)}{{\rm Pr} ( r = 0 )}= \frac{0.2 \cdot 0.75}{0.25} \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.6}\hspace{0.05cm},
- {\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1- {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = 0) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.4} \hspace{0.05cm}.
(3) Es gelte r = +1. Dann entscheidet sich
- der MAP–Empfänger für s_0, da {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = +1) = 1 > {\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = +1)= 0\hspace{0.05cm},
- der ML–Empfänger ebenfalls für s_0, da {\rm Pr} ( r = +1 \hspace{0.05cm}| \hspace{0.05cm}s_0) = 0.8 > {\rm Pr} ( r = +1 \hspace{0.05cm}| \hspace{0.05cm}s_1) = 0 \hspace{0.05cm}.
Richtig ist also NEIN.
(4) NEIN gilt auch unter der Voraussetzung „r = \, –1”, da keine Verbindung zwischen s_0 und „r = \, –1” besteht.
(5) Richtig sind die Lösungsvorschläge 1 und 4:
- Der MAP–Empfänger entscheidet sich für das Ereignis s_0, da {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = 0) = 0.6 > {\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = 0) = 0.4 \hspace{0.05cm}.
- Dagegen wird sich der ML–Empfänger für s_1 entscheiden, da {\rm Pr} ( r = 0 \hspace{0.05cm}| \hspace{0.05cm}s_1) = 0.4 > {\rm Pr} ( r = 0 \hspace{0.05cm}| \hspace{0.05cm}s_0) = 0.2 \hspace{0.05cm}.
(6) Der Maximum–Likelihood–Empfänger
- entscheidet sich nur für s_0, wenn r = +1 ist,
- macht also keinen Fehler, wenn s_1 gesendet wurde,
- macht nur einen Fehler bei der Kombination „s_0” und „r = 0”:
- {\rm Pr} ({\rm Symbolfehler} ) = {\rm Pr} ({\cal E } ) = 0.75 \cdot 0.2 \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.15} \hspace{0.05cm}.
(7) Der MAP–Empfänger entscheidet sich dagegen bei „r = 0” für s_0.
- Einen Symbolfehler gibt es also nur in der Kombination „s_1” und „r = 0”. Daraus folgt:
- {\rm Pr} ({\rm Symbolfehler} ) = {\rm Pr} ({\cal E } ) = 0.25 \cdot 0.4 \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.1} \hspace{0.05cm}.
- Die Fehlerwahrscheinlichkeit ist hier geringer als beim ML–Empfänger,
- da nun auch die unterschiedlichen A-priori–Wahrscheinlichkeiten {\rm Pr}(s_0) und {\rm Pr}(s_1) berücksichtigt werden.