Aufgabe 2.5: Ternäre Signalübertragung
Betrachtet wird ein ternäres Übertragungssystem (M=3) mit den möglichen Amplitudenwerten −s0, 0 und +s0.
- Bei der Übertragung addiert sich dem Signal ein additives Gaußsches Rauschen mit dem Effektivwert σd.
- Die Rückgewinnung des dreistufigen Digitalsignals beim Empfängers geschieht mit Hilfe von zwei Entscheiderschwellen bei E_{–} bzw. E_{+}.
- Zunächst werden die Auftrittswahrscheinlichkeiten der drei Eingangssymbole als gleichwahrscheinlich angenommen:
- p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.
- Die Entscheiderschwellen liegen vorerst mittig bei E_{–} = \, –s_0/2 und E_{+} = +s_0/2.
- Ab Teilaufgabe (3) sind die Symbolwahrscheinlichkeiten p_{–} = p_+ = 1/4 und p_0 = 1/2, wie in der Grafik dargestellt.
- Dafür soll durch Variation der Entscheiderschwellen E_{–} und E_+ die Symbolfehlerwahrscheinlichkeit p_{\rm S} minimiert werden.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel "Redundanzfreie Codierung".
- Für die Symbolfehlerwahrscheinlichkeit p_{\rm S} eines M–stufigen Nachrichtenübertragungssystems gilt
- mit gleichwahrscheinlichen Eingangssymbolen
- und Schwellenwerten genau in der Mitte zwischen zwei benachbarten Amplitudenstufen:
- p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right) \hspace{0.05cm}.
- Die Fehlerwahrscheinlichkeitswerte können Sie mit unserem HTML5/JavaScript–Applet Komplementäre Gaußsche Fehlerfunktionen numerisch ermitteln.
- Verwenden Sie zur Überprüfung der Ergebnisse das SWF–Berechnungsmodul Symbolfehlerwahrscheinlichkeit von Digitalsystemen
Fragebogen
Musterlösung
- p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right)= {4}/{ 3}\cdot {\rm Q}(2) ={4}/{ 3}\cdot 0.0228\hspace{0.15cm}\underline {\approx 3 \,\%} \hspace{0.05cm}.
(2) Bei doppeltem Rauscheffektivwert nimmt auch die Fehlerwahrscheinlichkeit signifikant zu:
- p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%} \hspace{0.05cm}.
(3) Die beiden äußeren Symbole werden jeweils mit der Wahrscheinlichkeit p = {\rm Q}(s_0/(2 \cdot \sigma_d)) = 0.1587 verfälscht.
- Die Verfälschungswahrscheinlichkeit des Symbols 0 ist doppelt so groß (es wird durch zwei Schwellen begrenzt).
- Unter Berücksichtigung der einzelnen Symbolwahrscheinlichkeiten erhält man:
- p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p = 1.5 \cdot 0.1587 \hspace{0.15cm}\underline {\approx 23.8 \,\%} \hspace{0.05cm}.
(4) Da das Symbol 0 häufiger auftritt und zudem in beiden Richtungen verfälscht werden kann, sollten die Schwellen nach außen verschoben werden.
- Die optimale Entscheiderschwelle E_{\rm +, \ opt} ergibt sich aus dem Schnittpunkt der beiden in der Grafik gezeigten Gaußfunktionen. Es muss gelten:
- \frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right] = \frac{ 1/4}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ (s_0 -E_{\rm +})^2}{2 \cdot \sigma_d^2}\right]
- \Rightarrow \hspace{0.3cm} {\rm exp} \left[ \frac{ (s_0 -E_{\rm +})^2 - E_{\rm +}^2}{2 \cdot \sigma_d^2}\right]= {1}/{ 2} \Rightarrow \hspace{0.3cm} {\rm exp} \left[ \frac{ 1 -2 \cdot E_{\rm +}/s_0}{2 \cdot \sigma_d^2/s_0^2}\right]= {1}/{ 2}
- \Rightarrow \hspace{0.3cm}\frac{ E_{\rm +}}{s_0}= \frac{1} { 2}+ \frac{\sigma_d^2} {s_0^2} \cdot {\rm ln}(2)\hspace{0.15cm}\underline {=0.673}\hspace{0.15cm}\approx {2}/ {3} \hspace{0.05cm}.
(5) Mit dem näherungsweisen Ergebnis aus Teilaufgabe (4) erhält man:
- p_{\rm S} \ = \ { 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ \sigma_d}}\right)+ 2 \cdot { 1}/{2} \cdot {\rm Q} \left( {\frac{2s_0/3}{ \sigma_d}}\right) +{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ \sigma_d}}\right)
- \Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ = { 1}/{2} \cdot {\rm Q} \left( 2/3 \right)+ {\rm Q} \left( 4/3 \right)= { 1}/{2} \cdot 0.251 + 0.092 \hspace{0.15cm}\underline {\approx 21.7 \,\%} \hspace{0.05cm}.
(6) Nach ähnlicher Rechnung wie unter Punkt (4) erhält man
- E_+ = 1 \, –0.0673 \ \underline{= 0.327} \approx 1/3.
- Es gilt weiterhin E_{–} = \, –E_+.
(7) Ähnlich wie in der Musterlösung zur Teilaufgabe (5) erhält man nun:
- p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3 \right)+0.4 \cdot {\rm Q} \left( 4/3 \right)
- \Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ 0.4 \cdot (0.092 + 0.251 + 0.092) \hspace{0.15cm}\underline {\approx 17.4 \,\%} \hspace{0.05cm}.
Diskussion des Ergebnisses:
- Es ergibt sich demnach eine kleinere Symbolfehlerwahrscheinlichkeit (17.4 \ \% gegenüber 21.2 \ \%) als bei gleichwahrscheinlichen Amplitudenkoeffizienten.
- Allerdings liegt nun keine redundanzfreie Codierung mehr vor, auch wenn die Amplitudenkoefiizienten statistisch voneinander unabhängig sind.
- Während bei gleichwahrscheinlichen Ternärsymbolen
- die Entropie H = {\rm log}_2(3) = 1.585 \ {\rm bit/Ternärsymbol} beträgt
- woraus die äquivalente Bitrate gemäß R_{\rm B} = H/T berechnet werden kann,
- gilt hier mit den Wahrscheinlichkeiten p_0 = 0.2 und p_{–} = p_+ = 0.4:
- H \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)= 0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm bit/Tern\ddot{a}rsymbol}} \hspace{0.05cm}.
- Das bedeutet: Die äquivalente Bitrate ist also um 4 \ \% kleiner, als sie für M = 3 maximal möglich wäre.