Aufgabe 4.8Z: BPSK–Fehlerwahrscheinlichkeit
Wir gehen vom optimalen Basisbandübertragungssystem für Binärsignale aus mit
- bipolaren Amplitudenkoeffizienten a_ν ∈ \{-1, +1\},
- rechteckförmigem Sendesignal s(t) mit den Signalwerten ±s_0 und der Bitdauer T_{\rm B},
- AWGN–Rauschen mit der (einseitigen) Rauschleistungsdichte N_0,
- Empfangsfilter gemäß dem Matched–Filter–Prinzip,
- Entscheider mit optimalem Schwellenwert E = 0.
Wenn nichts anderes angegeben ist, so sollten Sie von den folgenden Zahlenwerten ausgehen:
- s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.
Die Bitfehlerwahrscheinlichkeit dieses Basisbandsystems \rm (BB) lautet mit dem Rauscheffektivwert σ_d am Entscheider und der komplementären Gaußschen Fehlerfunktion {\rm Q}(x) ⇒ siehe Tabelle:
- p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/(2 \cdot T_{\rm B}}).
Diese Bitfehlerwahrscheinlichkeit kann auch in der Form
- p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )
geschrieben werden, wobei E_{\rm B} die „Signalenergie pro Bit” angibt.
Die Bitfehlerwahrscheinlichkeit eines vergleichbaren Übertragungssystems mit "Binary Phase Shift Keying" \rm (BPSK) lautet:
- p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.
Hinweise:
- Die Aufgabe gehört zum Kapitel "Lineare digitale Modulation".
- Bezug genommen wird insbesondere auf die Seite "Fehlerwahrscheinlichkeiten - ein kurzer Überblick".
- Die Herleitungen finden Sie im Kapitel "Lineare digitale Modulation – Kohärente Demodulation" des Buches „Digitalsignalübertragung”.
- Die Angabe einer Leistung in \rm V^2 bzw. einer Energie in \rm V^2 s bedeutet eine Umrechnung auf den Bezugswiderstand 1 \ \rm \Omega.
Fragebogen
Musterlösung
- \sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}}.
(2) Beim Basisbandsystem gilt:
- E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.15cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.
- Natürlich ergibt sich mit der zweiten angegebenen Gleichung die genau gleiche Fehlerwahrscheinlichkeit:
- p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.
(3) Bei halber Sendeamplitude s_0 = 2\,{\rm V} sinkt die Energie pro Bit auf ein Viertel und es gelten folgende Gleichungen:
- p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )= {\rm Q}(2)= 227 \cdot 10^{-4},
- p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.
(4) Richtig ist die Antwort 2:
- Unter Berücksichtigung der Energie E_{\rm B} = s_0^2 · T_{\rm B}/2 erhält man
- p_{\rm BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }}\hspace{0.1cm}\right ).
- Man erhält somit das gleiche Ergebnis wie beim optimalen Basisbandübertragungssystem.
(5) Es ergeben sich die genau gleichen Ergebnisse wie bei der Basisbandübertragung in den Teilaufgaben (1) und (3):
- { E_{\rm B}}/{N_0 }= 8: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}},
- { E_{\rm B}}/{N_0 }= 2: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.