Analytisches Signal und zugehörige Spektralfunktion

Aus LNTwww
Wechseln zu:Navigation, Suche

Definition im Frequenzbereich


Wir betrachten ein reelles bandpassartiges Signal  $x(t)$  mit dem dazugehörigen Bandpass–Spektrum  $X(f)$,  das bezüglich des Frequenznullpunktes einen geraden Real– und einen ungeraden Imaginärteil besitzt.  Es wird vorausgesetzt, dass die Trägerfrequenz  $f_{\rm T}$  sehr viel größer als die Bandbreite des Bandpass–Signals  $x(t)$  ist.

$\text{Definition:}$  Das zum physikalischen Signal  $x(t)$  gehörige  $\text{analytische Signal}$  $x_+(t)$  ist diejenige Zeitfunktion, deren Spektrum folgende Eigenschaft erfüllt:

Analytisches Signal im Frequenzbereich
$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot X(f) \; \hspace{0.2cm}\rm f\ddot{u}r\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm f\ddot{u}r\hspace{0.2cm} {\it f} < 0.} }\right.$$

Die so genannte $\text{Signumfunktion}$ ist dabei für positive Frequenzwerte gleich  $+1$  und für negative  $f$–Werte gleich  $-1$.

  • Der (beidseitige) Grenzwert liefert  $\sign(0) = 0$.
  • Der Index „+” soll deutlich machen, dass  $X_+(f)$  nur Anteile bei positiven Frequenzen besitzt.


Aus der Grafik erkennt man die Berechnungsvorschrift für  $X_+(f)$:

Das tatsächliche Bandpass–Spektrum  $X(f)$  wird

  • bei den positiven Frequenzen verdoppelt, und
  • bei den negativen Frequenzen zu Null gesetzt.


Spektrum  $X(f)$  und Spektrum  $X_{+}(f)$  des analytischen Signals

$\text{Beispiel 1:}$ 

Die Grafik zeigt

  • links das diskrete und komplexe Spektrum  $X(f)$  des Bandpass–Signals
$$x(t) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_{\rm u} \hspace{0.03cm}t) + 6\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi f_{\rm o} \hspace{0.03cm}t),$$
  • rechts das (ebenfalls diskrete, komplexe) Spektrum des analytischen Signals  $x_{+}(t)$.


Allgemeingültige Berechnungsvorschrift im Zeitbereich


Zur anschaulichen Erklärung des analytischen Signals

Wir betrachten nun das Spektrum  $X_+(f)$  des analytischen Signals etwas genauer und teilen dieses in einen bezüglich  $f = 0$  geraden Anteil  $X_{\rm +g}(f)$  und einen ungeraden Anteil  $X_{\rm +u}(f)$  auf:

$$X_+(f) = X_{\rm +g}(f) + X_{\rm +u}(f).$$

Alle diese Spektren sind im allgemeinen komplex.

Berücksichtigt man den  Zuordnungssatz  der Fouriertransformation, so sind anhand der Grafik folgende Aussagen möglich:

  • Der gerade Anteil  $X_{\rm +g}(f)$  von  $X_{+}(f)$  führt nach der Fouriertransformation zu einem reellen Zeitsignal, der ungerade Anteil  $X_{\rm +u}(f)$  zu einem imaginären.
  • Es ist offensichtlich, dass  $X_{\rm +g}(f)$  gleich dem tatsächlichen Fourierspektrum  $X(f)$  und damit der Realteil von  $x_{\rm +g}(t)$  gleich dem vorgegebenen Signal  $x(t)$  mit Bandpasseigenschaften ist.
  • Bezeichnen wir den Imaginärteil mit  $y(t)$, so lautet das analytische Signal:
$$x_+(t)= x(t) + {\rm j} \cdot y(t) .$$
  • Nach den allgemein gültigen Gesetzen der Fouriertransformation entsprechend dem  Zuordnungssatz  gilt somit für die Spektralfunktion des Imaginärteils:
$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f) \hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm sign}(f)}{ {\rm j}}\cdot X(f).$$
  • Transformiert man diese Gleichung in den Zeitbereich, so wird aus der Multiplikation die  Faltungsoperation, und man erhält:
$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star \hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau}}\hspace{0.15cm} {\rm d}\tau.$$

Darstellung mit der Hilberttransformation


An dieser Stelle ist es erforderlich, kurz auf eine weitere Spektraltransformation einzugehen, die im Buch  Lineare zeitinvariante Systeme  genauer behandelt wird.

$\text{Definition:}$  Für die  $\text{Hilberttransformierte}$  $ {\rm H}\left\{x(t)\right\}$  einer Zeitfunktion  $x(t)$  gilt:

$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau} }\hspace{0.15cm} {\rm d}\tau.$$
  • Dieses bestimmte Integral ist nicht auf einfache, herkömmliche Art lösbar, sondern muss mit Hilfe des  Cauchy–Hauptwertsatzes  ausgewertet werden.
  • Entsprechend gilt im Frequenzbereich:
$$Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .$$


Das Ergebnis der letzten Seite lässt sich mit dieser Definition wie folgt zusammenfassen:

  • Man erhält aus dem realen, physikalischen Bandpass–Signal  $x(t)$  das analytische Signal  $x_+(t)$,  indem man zu  $x(t)$  einen Imaginärteil entsprechend der Hilberttransformierten hinzufügt:
$$x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .$$
  • Die Hilberttransformierte  $\text{H}\{x(t)\}$  verschwindet nur für den Fall  $x(t) = \rm const.$   ⇒   Gleichsignal.  Bei allen anderen Signalformen ist das analytische Signal  $x_+(t)$  somit stets komplex.
  • Aus dem analytischen Signal  $x_+(t)$  kann das physikalisch Bandpass–Signal in einfacher Weise durch Realteilbildung ermittelt werden:
$$x(t) = {\rm Re}\left\{x_+(t)\right\} .$$

$\text{Beispiel 2:}$  Das Prinzip der Hilbert–Transformation wird durch die folgende Grafik nochmals verdeutlicht:

  • Nach der linken Darstellung  $\rm (A)$  kommt man vom physikalischen Signal  $x(t)$  zum analytischen Signal  $x_+(t)$, indem man einen Imaginärteil  ${\rm j} \cdot y(t)$  hinzufügt.
  • $y(t) = {\rm H}\left\{x(t)\right\}$  ist eine reelle Funktion, die sich am einfachsten im Spektralbereich durch Multiplikation des Spektrums  $X(f)$  mit  $- {\rm j} \cdot \sign(f)$  angeben lässt.
Zur Verdeutlichung der Hilbert–Transformierten




Die rechte Darstellung  $\rm (B)$  ist äquivalent zu  $\rm (A)$:

  • Mit der imaginären Funktion  $z(t)$  erhält man:
$$x_+(t) = x(t) + z(t).$$
  • Ein Vergleich beider Darstellungen zeigt, dass tatsächlich gilt:
$$z(t) = {\rm j} \cdot y(t).$$

Zeigerdiagrammdarstellung der harmonischen Schwingung


Die Spektralfunktion  $X(f)$  einer harmonischen Schwingung  $x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)$  besteht bekanntlich aus zwei Diracfunktionen bei den Frequenzen

  • $+f_{\rm T}$  mit dem komplexen Gewicht  $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
  • $-f_{\rm T}$  mit dem komplexen Gewicht  $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.


Somit lautet das Spektrum des analytischen Signals  $($also ohne die Diracfunktion bei der Frequenz  $f =-f_{\rm T})$:

$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm T}) .$$

Die dazugehörige Zeitfunktion erhält man durch Anwendung des  Verschiebungssatzes:

$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$

Diese Gleichung beschreibt einen mit konstanter Winkelgeschwindigkeit  $\omega_{\rm T} = 2\pi f_{\rm T}$  drehenden Zeiger. 

Im Folgenden bezeichnen wir den zeitlichen Verlauf eines analytischen und frequenzdikreten Signals  $x_+(t)$  auch als  $\text{Zeigerdiagramm}$.

$\text{Beispiel 3:}$  Aus Darstellungsgründen ist in der folgenden Grafik das Koordinatensystem entgegen der üblichen Darstellung um  $90^\circ$  nach links gedreht
(Realteil nach oben, Imaginärteil nach links).

Zeigerdiagramm einer harmonischen Schwingung

Anhand dieser Grafik sind folgende Aussagen möglich:

  • Zum Startzeitpunkt  $t = 0$  liegt der Zeiger der Länge  $A$  (Amplitude) mit dem Winkel  $-\varphi$  in der komplexen Ebene.  Im gezeichneten Beispiel gilt  $\varphi = 45^\circ$.
  • Für Zeiten  $t > 0$  dreht der Zeiger mit konstanter Winkelgeschwindigkeit (Kreisfrequenz)  $\omega_{\rm T}$  in mathematisch positiver Richtung, das heißt entgegen dem Uhrzeigersinn.
  • Die Spitze des Zeigers liegt somit stets auf einem Kreis mit Radius  $A$  und benötigt für eine Umdrehung genau die Zeit  $T_0$, also die Periodendauer der harmonischen Schwingung  $x(t)$.
  • Die Projektion des analytischen Signals  $x_+(t)$  auf die reelle Achse, durch rote Punkte markiert, liefert die Augenblickswerte von  $x(t)$.


Zeigerdiagramm einer Summe harmonischer Schwingungen


Für die weitere Beschreibung gehen wir für das analytische Signal von folgendem diskretem Spektrum aus:

Zeigerdiagramm eines Verbundes aus drei harmonischen Schwingungen
$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \varphi_i}\cdot\delta (f - f_{i}) .$$

Das linke Bild zeigt ein solches Spektrum für das Beispiel  $I = 3$. Wählt man  $I$  relativ groß und den Abstand zwischen benachbarten Spektrallinien entsprechend klein, so können mit obiger Gleichung auch (frequenz–) kontinuierliche Spektralfunktionen  $X_+(f)$  angenähert werden.

Im rechten Bild ist die dazugehörige Zeitfunktion angedeutet. Diese lautet allgemein:

$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i \hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$

Zu dieser Grafik anzumerken:

  • Die Skizze zeigt die Ausgangslage der Zeiger zum Startzeitpunkt  $t = 0$  entsprechend den Amplituden  $A_i$  und den Phasenlagen  $\varphi_i$.
  • Die Spitze des resultierenden Zeigerverbundes ist durch das violette Kreuz markiert.  Man erhält durch vektorielle Addition der drei Einzelzeiger für den Zeitpunkt  $t = 0$:
$$x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1 \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.$$
  • Für Zeiten  $t > 0$  drehen die drei Zeiger mit unterschiedlichen Winkelgeschwindigkeiten  $\omega_i = 2\pi f_i$.  Der rote Zeiger dreht schneller als der grüne, aber langsamer als der blaue Zeiger.
  • Da alle Zeiger entgegen dem Uhrzeigersinn drehen, wird sich auch der resultierende Zeiger  $x_+(t)$  tendenziell in diese Richtung bewegen.  Zum Zeitpunkt  $t = 1\,µ\text {s}$  liegt die Spitze des resultierenen Zeigers für die gegebenen Parameterwerte bei
$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}µ s}) & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}40 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}50 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}60 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} = \\ & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}45.6^\circ} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}18^\circ}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx 1.673- {\rm j} \cdot 0.464.\end{align*}$$
  • Die resultierende Zeigerspitze liegt nun aber nicht wie bei einer einzigen Schwingung auf einem Kreis, sondern es entsteht eine komplizierte geometrische Figur.


Das interaktive Applet  Physikalisches Signal & Analytisches Signal  verdeutlicht  $x_+(t)$  für die Summe dreier harmonischer Schwingungen.


Aufgaben zum Kapitel


Aufgabe 4.3: Zeigerdiagrammdarstellung

Aufgabe 4.3Z: Hilbert-Transformator

Aufgabe 4.4: Zeigerdiagramm bei ZSB-AM

Aufgabe 4.4Z: Zeigerdiagramm bei ESB-AM