Aufgabe 3.7: Hochpass-Impulsantwort

Aus LNTwww
Wechseln zu:Navigation, Suche

Hochpass zweiter Ordnung

Wir gehen von der nebenstehend skizzierten Anordnung aus. Die Übertragungsfunktionen der beiden identischen Hochpässe lauten:

$$H_{\rm L}^{(1)}(p) = H_{\rm L}^{(2)}(p) =\frac{p}{p+A} \hspace{0.05cm} .$$

Da die Vierpole durch einen Trennverstärker widerstandsmäßig entkoppelt sind, lässt sich für die Gesamtübertragungsfunktion schreiben:

$$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p) \hspace{0.05cm} .$$

Gleichzeitig ist bekannt, dass folgende Gleichung gültig ist:

$$H_{\rm L}(p) =\frac{4}{1/p^2 + 4/p +4} \hspace{0.05cm} .$$

Stellt man diese Funktion in Pol–Nullstellen–Form dar, so wird sich herausstellen, dass hier die Anzahl der Nullstellen ($Z$) gleich der Anzahl der Pole ($N$) ist. Eine direkte Anwendung des Residuensatzes ist hier deshalb nicht möglich.

Um die Zeitfunktion $h(t)$ berechnen zu können, muss vielmehr eine Partialbruchzerlegung entsprechend $H_{\rm L}(p) =1- H_{\rm L}\hspace{-0.05cm}'(p) \hspace{0.05cm}$ vorgenommen werden. Damit gilt für die Impulsantwort:

$$h(t) = \delta(t)- h\hspace{0.03cm}'(t) \hspace{0.05cm}.$$

Bezüglich $H_{\rm L}'(p)$ gilt $Z' < N'$. Somit kann der kontinuierliche Anteil $h'(t)$ der Impulsantwort wieder mit dem Residuensatz ermittelt werden.



Hinweise:

  • Die Aufgabe gehört zum Kapitel Laplace–Rücktransformation.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Das Residium eines $l$–fachen Pols $p_{\rm x}$ innerhalb der Funktion $H_{\rm L}(p)$ lautet:
$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.03cm}\{H_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}= \frac{1}{(l-1)!}\cdot \frac{{\rm d}^{\hspace{0.05cm}l-1}}{{\rm d}p^{\hspace{0.05cm}l-1}}\hspace{0.15cm} \left \{H_{\rm L}(p)\cdot (p - p_{\rm x})^{\hspace{0.05cm}l} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.05cm} .$$
  • Die Ableitung des Produkts $y(x) = f(x) \cdot g(x)$ ist wie folgt gegeben:
$$\frac{{\rm d}{\hspace{0.05cm}y(x)}}{{\rm d}\hspace{0.05cm}x}= \frac{{\rm d}{\hspace{0.05cm}f(x)}}{{\rm d}\hspace{0.05cm}x}\cdot g(x) + \frac{{\rm d}{\hspace{0.05cm}g(x)}}{{\rm d}\hspace{0.05cm}x}\cdot f(x) \hspace{0.05cm} .$$


Fragebogen

1

Stellen Sie $H_{\rm L}(p)$ in Pol–Nullstellen–Form dar. Wieviele Nullstellen ($Z$) und Pole ($N$) gibt es? Wie groß ist der konstante Faktor $K$?

$Z \hspace{0.28cm} = \ $

$N \hspace{0.2cm} = \ $

$K \hspace{0.2cm} = \ $

2

Wie groß ist der Parameter $A$ der beiden Teilvierpolen?

$A \ = \ $

3

Wandeln Sie $H_{\rm L}(p) = 1 - H_{\rm L}'(p)$ um. Welches Ergebnis erhält man für $H_{\rm L}'(p)$?

$H_{\rm L}'(p) = p^2/(p+0.5)^2$,
$H_{\rm L}'(p) = p/(p+0.5)^2$,
$H_{\rm L}'(p) = (p+0.25)/(p+0.5)^2$.

4

Berechnen Sie die Zeitfunktion $h'(t)$. Welche Zahlenwerte ergeben sich für die angegebenen Zeitpunkte?

$h'(t = 0) \ = \ $

$h'(t = 1) \ = \ $

$h'(t → ∞)\ = \ $


Musterlösung

(1)  Ausgehend von der vorgegebenen Gleichung kann $H_{\rm L}(p)$ wie folgt umgeformt werden: $$H_{\rm L}(p) =\frac{4}{1/p^2 + 4/p +4}=\frac{p^2}{p^2 + p +1/4}=\frac{p^2}{(p +1/2)^2} \hspace{0.05cm} $$ $$\Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{ Z = 2\hspace{0.05cm} , \hspace{0.2cm}N = 2\hspace{0.05cm} , \hspace{0.2cm}K = 1} \hspace{0.05cm} .$$


(2)  Die Gesamtübertragungsfunktion lautet entsprechend der Angabe: $$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p) =\frac{p^2}{(p+A)^2} \hspace{0.05cm} .$$ Ein Vergleich mit dem Ergebnis der Teilaufgabe (1) zeigt, dass $\underline{A = 0.5}$ sein muss.


(3)  Ausgehend von der in der Teilaufgabe (1) berechneten Gleichung erhält man $$H_{\rm L}(p) =\frac{p^2}{p^2 + p +0.25}= \frac{p^2 + p +0.25}{p^2 + p +0.25}- \frac{p +0.25}{p^2 + p +0.25}$$ $$ \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{p +0.25}{p^2 + p +0.25}= \frac{p +0.25}{(p +0.5)^2} \hspace{0.05cm} .$$ Richtig ist dementsprechend der letzte Lösungsvorschlag.


(4)  Bezüglich der Funktion $H_{\rm L}'(p)$ gilt $Z' = 1$, $N' = 2$ und $K' = 1$. Die beiden Pole bei $p_{\rm x} = -0.5$ fallen zusammen, so dass nur ein Residium ermittelt werden muss: $$h\hspace{0.03cm}'(t) \hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.7cm}\{H_{\rm L}\hspace{-0.05cm}'(p)\cdot {\rm e}^{p t}\}= \frac{\rm d}{{\rm d}p}\hspace{0.15cm} \left \{ \frac{p +0.25}{(p +0.5)^2} \cdot (p +0.5)^2 \cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} = \hspace{0.2cm}\frac{\rm d}{{\rm d}p}\hspace{0.15cm} \left \{ (p +0.25) \cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} \hspace{0.05cm} .$$

Impulsantwort des Hochpasses (rot)

Mit der Produktregel der Differentialrechnung erhält man: $$h\hspace{0.03cm}'(t) \hspace{0.15cm} = \hspace{0.15cm} {\rm e}^{p \hspace{0.05cm}t} + ( p + 0.25) \cdot t \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} = \hspace{0.15cm} (1- {t}/{4}) \cdot{\rm e}^{-t/2} \hspace{0.05cm} $$ $$\Rightarrow \hspace{0.3cm}h\hspace{0.03cm}'(t = 0) \hspace{0.15cm} = \underline{1}\hspace{0.05cm} ,\hspace{0.3cm} h\hspace{0.03cm}'(t = 1) \hspace{0.15cm} = \underline {0.455}\hspace{0.05cm} \hspace{0.05cm} ,\hspace{0.3cm} h\hspace{0.03cm}'(t \rightarrow \infty) \hspace{0.15cm} = \underline {= 0}\hspace{0.05cm} .$$ Die Grafik zeigt als blaue Kurve $h'(t)$ und als rote Kurve die gesamte Impulsantwort $$h(t) = \delta (t) - (1- {t}/{4}) \cdot{\rm e}^{-t/2} \hspace{0.05cm}.$$