Aufgabe 3.7: Hochpass-Impulsantwort
Wir gehen von der skizzierten Anordnung aus. Die Übertragungsfunktionen der beiden identischen Hochpässe lauten:
- $$H_{\rm L}^{(1)}(p) = H_{\rm L}^{(2)}(p) =\frac{p}{p+A} \hspace{0.05cm} .$$
Da die Vierpole durch einen Trennverstärker widerstandsmäßig entkoppelt sind, lässt sich für die Gesamtübertragungsfunktion schreiben:
- $$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p) \hspace{0.05cm} .$$
Gleichzeitig ist bekannt, dass folgende Gleichung gültig ist:
- $$H_{\rm L}(p) =\frac{4}{1/p^2 + 4/p +4} \hspace{0.05cm} .$$
Stellt man diese Funktion in Pol–Nullstellen–Form dar, so wird sich herausstellen, dass hier die Anzahl der Nullstellen $(Z)$ gleich der Anzahl der Pole $(N)$ ist. Eine direkte Anwendung des Residuensatzes ist hier deshalb nicht möglich.
Um die Zeitfunktion $h(t)$ berechnen zu können, muss vielmehr eine "Partialbruchzerlegung" entsprechend $H_{\rm L}(p) =1- H_{\rm L}\hspace{-0.05cm}'(p) \hspace{0.05cm}$ vorgenommen werden. Damit gilt für die Impulsantwort:
- $$h(t) = \delta(t)- h\hspace{0.03cm}'(t) \hspace{0.05cm}.$$
Bezüglich $H_{\rm L}'(p)$ gilt $Z' < N'$. Somit kann der kontinuierliche Anteil $h'(t)$ der Impulsantwort mit dem Residuensatz ermittelt werden.
Hinweise:
- Die Aufgabe gehört zum Kapitel Laplace–Rücktransformation.
- Das Residium eines $l$–fachen Pols $p_{\rm x}$ innerhalb der Funktion $H_{\rm L}(p)$ lautet:
- $${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.03cm}\{H_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}= \frac{1}{(l-1)!}\cdot \frac{{\rm d}^{\hspace{0.05cm}l-1}}{{\rm d}p^{\hspace{0.05cm}l-1}}\hspace{0.15cm} \left \{H_{\rm L}(p)\cdot (p - p_{\rm x})^{\hspace{0.05cm}l} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.05cm} .$$
- Die Ableitung des Produkts $y(x) = f(x) \cdot g(x)$ ist wie folgt gegeben:
- $$\frac{{\rm d}{\hspace{0.05cm}y(x)}}{{\rm d}\hspace{0.05cm}x}= \frac{{\rm d}{\hspace{0.05cm}f(x)}}{{\rm d}\hspace{0.05cm}x}\cdot g(x) + \frac{{\rm d}{\hspace{0.05cm}g(x)}}{{\rm d}\hspace{0.05cm}x}\cdot f(x) \hspace{0.05cm} .$$
Fragebogen
Musterlösung
- $$H_{\rm L}(p) =\frac{4}{1/p^2 + 4/p +4}=\frac{p^2}{p^2 + p +1/4}=\frac{p^2}{(p +1/2)^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{ Z = 2\hspace{0.05cm} , \hspace{0.2cm}N = 2\hspace{0.05cm} , \hspace{0.2cm}K = 1} \hspace{0.05cm} .$$
(2) Die Gesamtübertragungsfunktion lautet entsprechend der Angabe:
- $$H_{\rm L}(p) = H_{\rm L}^{(1)}(p) \cdot H_{\rm L}^{(2)}(p) =\frac{p^2}{(p+A)^2} \hspace{0.05cm} .$$
Ein Vergleich mit dem Ergebnis der Teilaufgabe (1) zeigt, dass $\underline{A = 0.5}$ sein muss.
(3) Richtig ist der letzte Lösungsvorschlag:
- Ausgehend von der in der Teilaufgabe (1) berechneten Gleichung erhält man
- $$H_{\rm L}(p) =\frac{p^2}{p^2 + p +0.25}= \frac{p^2 + p +0.25}{p^2 + p +0.25}- \frac{p +0.25}{p^2 + p +0.25}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{p +0.25}{p^2 + p +0.25}= \frac{p +0.25}{(p +0.5)^2} \hspace{0.05cm} .$$
(4) Bezüglich der Funktion $H_{\rm L}'(p)$ gilt $Z' = 1$, $N' = 2$ und $K' = 1$.
Die beiden Pole bei $p_{\rm x} = -0.5$ fallen zusammen, so dass nur ein Residium ermittelt werden muss:
- $$h\hspace{0.03cm}'(t) \hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{\rm x}} \hspace{0.7cm}\{H_{\rm L}\hspace{-0.05cm}'(p)\cdot {\rm e}^{p t}\}= \frac{\rm d}{{\rm d}p}\hspace{0.15cm} \left \{ \frac{p +0.25}{(p +0.5)^2} \cdot (p +0.5)^2 \cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} = \hspace{0.2cm}\frac{\rm d}{{\rm d}p}\hspace{0.15cm} \left \{ (p +0.25) \cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} \hspace{0.05cm} .$$
Mit der Produktregel der Differentialrechnung erhält man: $$h\hspace{0.03cm}'(t) \hspace{0.15cm} = \hspace{0.15cm} {\rm e}^{p \hspace{0.05cm}t} + ( p + 0.25) \cdot t \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.5} = \hspace{0.15cm} (1- {t}/{4}) \cdot{\rm e}^{-t/2} \hspace{0.05cm} $$ $$\Rightarrow \hspace{0.3cm}h\hspace{0.03cm}'(t = 0) \hspace{0.15cm} = \underline{1}\hspace{0.05cm} ,\hspace{0.3cm} h\hspace{0.03cm}'(t = 1) \hspace{0.15cm} = \underline {0.455}\hspace{0.05cm} \hspace{0.05cm} ,\hspace{0.3cm} h\hspace{0.03cm}'(t \rightarrow \infty) \hspace{0.15cm} = \underline {= 0}\hspace{0.05cm} .$$ Die Grafik zeigt jeweils für nicht–negative Zeiten
- als blaue Kurve die Impulsantwort $h'(t)$ des äquivalenten Tiefpasses,
- als rote Kurve die gesamte Impulsantwort des betrachteten Hochpasses:
- $$h(t) = \delta (t) - (1- {t}/{4}) \cdot{\rm e}^{-t/2} \hspace{0.05cm}.$$