Aufgabe 1.1: Zur Kennzeichnung aller Bücher
Seit den 1960er Jahren werden alle Bücher mit einer 10–stelligen "International Standard Book Number" $\rm (ISBN)$ versehen. Die letzte Ziffer dieser so genannten ISBN–10–Angabe berechnet sich dabei entsprechend folgender Regel:
- $$ z_{10}= \left ( \sum_{i=1}^{9} \hspace{0.2cm} i \cdot z_i \right ) \hspace{-0.2cm} \mod 11 \hspace{0.05cm}.$$
Seit 2007 ist zusätzlich die Angabe gemäß dem Standard ISBN–13 verpflichtend, wobei die Prüfziffer $z_{\rm 13}$ sich dann wie folgt ergibt:
- $$z_{13} = 10 - \left ( \sum_{i=1}^{12} \hspace{0.2cm} z_i \cdot 3^{(i+1)\mod 2} \right ) \hspace{-0.2cm} \mod 10 \hspace{0.05cm}.$$
Nebenstehend sind einige beispielhafte „ISBNs” angegeben. Hierauf beziehen sich die folgenden Fragen.
Hinweis: Die Aufgabe gehört zum Kapitel "Zielsetzung der Kanalcodierung"
Fragebogen
Musterlösung
- $$S \ = \ \hspace{-0.1cm} \sum_{i=1}^{13} \hspace{0.2cm} z_i \cdot 3^{(i+1) \hspace{-0.2cm} \mod 2} = (9+8+8+7+7+6+8) \cdot 1 + (7+3+2+3+0+4) \cdot 3 = 110\hspace{0.3cm} \Rightarrow \hspace{0.3cm} S \hspace{-0.2cm} \mod 10 \hspace{0.15cm}\underline {= 0} \hspace{0.05cm}.$$
(2) Die Antwort ist Nein. Mit einer einzigen Prüfziffer lässt sich nur eine Auslöschung rekonstruieren.
(3) Eine Ziffer kann rekonstruiert werden ⇒ Ja. Für die Ziffer $z_{\rm 8}$ muss gelten:
- $$[(9+8+4+3+0+1+2) \cdot 1 + (7+3+5+z_8+7+5) \cdot 3] \hspace{-0.2cm} \mod 10 = 0\hspace{0.3cm} \Rightarrow \hspace{0.3cm} [108 + 3z_8] \hspace{-0.2cm} \mod 10 = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_8 \hspace{0.15cm}\underline {= 4} \hspace{0.05cm}.$$
(4) Durch die Modulo–11–Operation kann $z_{10}$ die Werte $0,\ 1,\ \text{...} ,\ 10$ annehmen ⇒ $\underline{M =11}$.
- Da „10” keine Ziffer ist, behilft man sich mit $z_{10} = \rm X$.
- Dies entspricht der römischen Darstellung der Zahl „10”.
(5) Die Prüfbedingung lautet:
- $$\ \ \ S= \left ( \sum_{i=1}^{10} \hspace{0.2cm} i \cdot z_i \right ) \hspace{-0.2cm} \mod 11 = 0 \hspace{0.05cm}.$$
- Die gegebene ISBN erfüllt diese Bedingung:
- $$3 \cdot 1 + 8 \cdot 2 + 2 \cdot 3 + 7 \cdot 4 + 3 \cdot 5 + 7 \cdot 6 + 0 \cdot 7 + 6 \cdot 8 + 4 \cdot 9 + 7 \cdot 10 = 264\hspace{0.3cm} ⇒\hspace{0.3cm} S= 264 \hspace{-0.3cm} \mod 11 = 0 \hspace{0.05cm}.$$
- Richtig ist die Aussage 2, da sich die Prüfsumme $S = 0$ auch bei mehr als einem Fehler ergeben könnte.