Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Aufgabe 4.13: Vierstufige QAM

Aus LNTwww
Version vom 23. August 2022, 13:50 Uhr von Guenter (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Signalraumkonstellation der 4–QAM

Wir betrachten nun eine Quadraturamplitudenmodulation mit  M=4  Symbolen und den (normierten) Signalraumpunkten

\boldsymbol{ s}_{\rm A} = (+1, +1)\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm B} = (-1, +1)\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm C} = (-1, -1)\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm D} = (+1, -1) \hspace{0.05cm}.

Die Symbole sind gleichwahrscheinlich. Damit kann man zur Berechnung der mittleren Symbolfehlerwahrscheinlichkeit auf die Mittelung verzichten.

Beispielsweise gilt:

p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Pr}( \boldsymbol{ s}_{\rm B} \cup \boldsymbol{ s}_{\rm C} \cup \boldsymbol{ s}_{\rm D} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) \hspace{0.05cm}.

Die Zuordnung der Symbole zu  "!Bitdupeln"  kann ebenfalls der Grafik  (rote Beschriftungen)  entnommen werden.  Hierbei ist die Graycodierung vorausgesetzt.




Hinweise:

  • Für die Teilaufgabe  (4)  ist der (zeitdiskrete) AWGN–Kanal mit der Varianz  \sigma_n^2 = N_0/2  vorausgesetzt.
  • Die Wahrscheinlichkeit,  dass durch das Rauschen  n  ein Symbol horizontal oder vertikal verfälscht wird,  ist mit der komplementären Gaußschen Fehlerfunktion  {\rm Q}(x):
p = {\rm Pr}( n < -x_0) = {\rm Pr}( n > + x_0) = {\rm Q}(x_0 / \sigma_n) \hspace{0.05cm}.



Fragebogen

1

Geben Sie als obere Schranke für die Symbolfehlerwahrscheinlichkeit  p_{\rm S}  die  "Union Bound"  an  (p_{\rm UB} ≥ p_{\rm S}).  Es gelte  p = 0.1.

p_{\rm UB}\ = \

2

Wie groß ist die tatsächliche Symbolfehlerwahrscheinlichkeit  p_{\rm S}?

p_{\rm S}\ = \

3

Wie groß ist die Bitfehlerwahrscheinlichkeit  p_{\rm B}  bei Graycodierung?

p_{\rm B}\ = \

4

Welcher Zusammenhang besteht zwischen  p_{\rm B}  und  E_{\rm B}/N_0?

p_{\rm B} = {\rm Q}\big [\sqrt {E_{\rm B}/N_0}\big ],
p_{\rm B} = {\rm Q}\big [\sqrt {2E_{\rm B}/N_0}\big ],
p_{\rm B} = {\rm Q}\big [\sqrt {E_{\rm B}/(2N_0)}\big ].


Musterlösung

(1)  Die „Union Bound” ist eine obere Schranke für die mittlere Symbolfehlerwahrscheinlichkeit.  Für letztere gilt:

p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}({\cal{E}}) = {\rm Pr}( {\cal{E}} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet})= {\rm Pr}( \boldsymbol{ s}_{\rm B} \cup \boldsymbol{ s}_{\rm C} \cup \boldsymbol{ s}_{\rm D} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) \hspace{0.05cm}.
  • Dagegen gilt für die  (verbesserte)  „Union Bound” im vorliegenden Beispiel:
p_{\rm UB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}( \boldsymbol{ s}_{\rm B} \cup \boldsymbol{ s}_{\rm C} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) +{\rm Pr}( \boldsymbol{ s}_{\rm C} \cup \boldsymbol{ s}_{\rm D} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) = 2p = \underline{0.2} \hspace{0.05cm}.


(2)  Die beiden Wahrscheinlichkeiten,  aus der sich die „Union Bound” additiv zusammensetzt,  lassen sich geometrisch wie folgt deuten:

  • {\rm Pr}(\boldsymbol{s}_{\rm B} \cup \boldsymbol{s}_{\rm C} | \boldsymbol{s}_{\rm A})  ist die Wahrscheinlichkeit,  dass der Empfangspunkt in der linken Halbebene liegt
    ⇒   die AWGN–Rauschkomponente  n_1  ist negativ und betragsmäßig größer als  \sqrt {E}.
  • {\rm Pr}(\boldsymbol{s}_{\rm C} \cup \boldsymbol{s}_{\rm D} | \boldsymbol{s}_{\rm A})  ist die Wahrscheinlichkeit,  dass der Empfangspunkt in der unteren Halbebene liegt
    ⇒   die AWGN–Rauschkomponente  n_2  ist negativ und betragsmäßig größer als  \sqrt {E}.


Die  „Union Bound”  berücksichtigt also den dritten Quadranten zweimal.  Diesen Fehler kann man hier relativ einfach kompensieren:

p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm UB} - {\rm Pr}( \boldsymbol{ s}_{\rm C} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) = 2 p - {\rm Pr}\left [ ( n_1 < -\sqrt{E})\cap ( n_2 < -\sqrt{E})\right ] = 2p - p^2 = \underline{0.19} \hspace{0.05cm}.

Hierbei ist berücksichtigt,  dass die Rauschkomponenten  n_1  und  n_2  voneinander unabhängig sind.


(3)  Wie in der Teilaufgabe  (2)  nachgewiesen wurde,  gelten für die einzelnen Verfälschungswahrscheinlichkeiten:

  • Quadrant 2:  {\rm Pr}(\boldsymbol{s}_{\rm B} \ {\rm empfangen} \ | \ \boldsymbol{s}_{\rm A} \ {\rm gesendet}) = 0.09,
  • Quadrant 3:  {\rm Pr}(\boldsymbol{s}_{\rm C} \ {\rm empfangen} \ | \ \boldsymbol{s}_{\rm A} \ {\rm gesendet}) = 0.01,
  • Quadrant 4:  {\rm Pr}(\boldsymbol{s}_{\rm D} \ {\rm empfangen} \ | \ \boldsymbol{s}_{\rm A} \ {\rm gesendet}) = 0.09.


Für die mittlere Bitfehlerwahrscheinlichkeit erhält man somit:

p_{\rm B} = { 1}/{ 2} \cdot \big [ 1 \cdot 0.09 + 2 \cdot 0.01 + 1 \cdot 0.09\big ]= \underline{0.1} = p \hspace{0.05cm}.
  • Berücksichtigt ist,  dass der zweite Quadrant und der vierteQuadrant jeweils nur zu einem Bitfehler führt,  der dritte Quadrant dagegen zu zweien.
  • Der Faktor  1/2  berücksichtigt wieder,  dass jeweils ein vierwertiges Symbol zwei Binärzeichen  (Bit)  beinhaltet.


(4)  Die Bitfehlerwahrscheinlichkeit ist nach der Lösung zu  (2)  gleich der Wahrscheinlichkeit,  dass die beiden Rauschkomponenten gewisse Grenzen überschreiten:

p_{\rm B} = {\rm Pr}( n_1 < -\sqrt{E}) = {\rm Pr}( n_2 < -\sqrt{E}) \hspace{0.05cm}.
  • Beim AWGN–Kanal lautet diese Wahrscheinlichkeit mit der Varianz  \sigma_n^2 = N_0/2:
p_{\rm B} = {\rm Q} \left ( { { \sqrt{E}}/{ \sigma_n} }\right ) = {\rm Q} \left ( \sqrt{ { {2E}}/{ N_0} }\right ) \hspace{0.05cm}.
  • Die mittlere Energie pro Symbol kann am einfachsten durch Mittelung über die quadratischen Abstände der Signalraumpunkte vom Ursprung bestimmt werden.  Daraus ergibt sich  E_{\rm S} = 2E.
  • Die mittlere Energie pro Bit ist halb so groß: E_{\rm B} = E_{\rm S}/2 = E. Daraus folgt:
p_{\rm B} = {\rm Q} \left ( \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) \hspace{0.05cm}.
  • Richtig ist also der  zweite Lösungsvorschlag.
  • Zum gleichen Ergebnis kommt man auch,  wenn man die  "4–QAM"  wie im Kapitel  "Struktur des optimalen Empfängers" des Buches „Modulationsverfahren” als zwei orthogonale  (das heißt:  sich nicht störende)  BPSK–Systeme über den gleichen Kanal betrachtet.