Aufgabe 4.17Z: Rayleigh- und Riceverteilung

Aus LNTwww
Version vom 10. Oktober 2022, 12:44 Uhr von Guenter (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Rice- (oben) und Rayleigh (unten)

Für die Untersuchung von Nachrichtensystemen haben die Rayleigh– und die Rice–Verteilung eine große Bedeutung.  Im Folgenden sei  $y$  eine rayleigh– oder eine riceverteilte Zufallsgröße und  $\eta$  jeweils eine Realisierung hiervon.

  • Die  "Rayleighverteilung"  ergibt sich dabei für die Wahrscheinlichkeitsdichtefunktion  $\rm (WDF)$  einer Zufallsgröße  $y$,  die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten  $u$  und  $v$  $($beide mit der Streuung  $\sigma_n)$  wie folgt ergibt:
$$y = \sqrt{u^2 + v^2} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} p_y (\eta) = \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2}{2 \sigma_n^2}\right ] \hspace{0.01cm}.$$
  • Die  "Riceverteilung"  erhält man unter sonst gleichen Randbedingungen für den Anwendungsfall,  dass zumindest bei einer der beiden Komponenten noch eine Konstante  $C$  addiert wird,  zum Beispiel:
$$y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2 + C^2}{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta \cdot C}{ \sigma_n^2}\right ] \hspace{0.05cm}.$$

In dieser Gleichung bezeichnet  ${\rm I}_0(x)$  die  "modifizierte Besselfunktion nullter Ordnung".

In der Grafik sind die beiden Dichtefunktionen dargestellt,  wobei allerdings nicht angegeben wird,  ob  $p_{\hspace{0.03cm}\rm I}(\eta)$  bzw.  $p_{\hspace{0.03cm}\rm II}(\eta)$  zu einer Rayleigh– oder zu einer Riceverteilung gehören.

  • Bekannt ist nur,  dass je eine Rayleigh– und eine Riceverteilung dargestellt ist.
  • Der Parameter  $\sigma_n$  ist bei beiden Verteilungen gleich.


Für Ihre Entscheidung,  ob Sie  $p_{\hspace{0.03cm}\rm I}(\eta)$  oder  $p_{\rm II}(\hspace{0.03cm}\eta)$  der Riceverteilung zuordnen,  und für die Ermittlung der WDF–Parameter können Sie folgende Aussagen berücksichtigen:

  • Für große Werte des Quotienten  $C/\sigma_n$  lässt sich die Riceverteilung durch eine Gaußverteilung mit Mittelwert  $C$  und Streuung  $\sigma_n$  annähern.
  • Die der Grafik zugrunde liegenden Werte von  $C$  und  $\sigma_n$  sind ganzzahlig.


Hinsichtlich der Rayleighverteilung ist zu beachten:

  • Für beide Verteilungen ist das gleiche  $\sigma_n$  zugrunde gelegt.
  • Für die Streuung  ("Wurzel aus der Varianz")  der Rayleighverteilung gilt:
$$\sigma_y = \sigma_n \cdot \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n \hspace{0.05cm}.$$
  • Für die Streuung bzw. für die Varianz der Riceverteilung kann allgemein nur ein komplizierter Ausdruck mit hypergeometrischen Funktionen angegeben werden,  ansonsten nur eine Näherung für  $C \gg \sigma_n$  entsprechend der Gaußverteilung.




Hinweise:

  • Gegeben ist zudem das folgende unbestimmteIntegral:
$$\int x \cdot {\rm e }^{-x^2} \,{\rm d} x = -{1}/{2} \cdot {\rm e }^{-x^2} + {\rm const. } $$



Fragebogen

1

Ordnen Sie die Grafiken der Rayleigh– bzw. Riceverteilung zu.

$p_{\hspace{0.03cm}\rm I}(\eta)$  entspricht der Rayleighverteilung,  $p_{\hspace{0.03cm}\rm II}(\eta)$  der Riceverteilung.
$p_{\hspace{0.03cm}\rm I}(\eta)$  entspricht der Riceverteilung,  $p_{\hspace{0.03cm}\rm II}(\eta)$  der Rayleighverteilung.

2

Geben Sie die Parameter der hier dargestellten Riceverteilung an.

$C \hspace{0.25cm} = \ $

$\sigma_n \ = \ $

3

Welche Verteilung besitzt eine größere Varianz?

Die Rayleighverteilung,
die Riceverteilung?

4

Berechnen Sie die Überschreitungswahrscheinlichkeiten der Rayleighverteilung.

${\rm Pr}(y > \sigma_n) \hspace{0.33cm} = \ $

$ \ \%$
${\rm Pr}(y > 2\sigma_n) \ = \ $

$ \ \%$
${\rm Pr}(y > 3\sigma_n) \ = \ $

$ \ \%$


Musterlösung

(1)  Richtig ist der  zweite Lösungsvorschlag:

  • Die obere Grafik zeigt näherungsweise eine Gaußverteilung und gehört dementsprechend zur Riceverteilung.


(2)  Man erkennt aus der Grafik:  Der Mittelwert der Gaußverteilung ist  $\underline {C = 4}$  und die Streuung ist  $\underline {\sigma_n = 1}$.

  • Vorgegeben war ja,  dass  $C$  und  $\sigma_n$  ganzzahlig seien.  Damit lauten die beiden Dichtefunktionen:
$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta} \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx \frac{1}{\sqrt{2\pi }}\cdot {\rm exp } \left [ - \frac{(\eta-4)^2 }{2 }\right ]\hspace{0.05cm},$$
$$ p_{\rm II} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta} \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 }\right ] \hspace{0.05cm}.$$


(3)  Richtig ist der  Lösungsvorschlag 2,  wie bereits aus der Grafik ersichtlich ist.  Eine Rechnung bestätigt dieses Ergebnis:

$$\sigma_{\rm Rice}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 = 1\hspace{0.05cm},$$
$$ \sigma_{\rm Rayl}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2 \cdot ({2 - {\pi}/{2 }}) \approx 0.429 \hspace{0.05cm}.$$


(4)  Allgemein ist die Wahrscheinlichkeit,  dass  $y$  größer ist als ein Wert  $y_0$,  gleich

$${\rm Pr}(y > y_0) = \int_{y_0}^{\infty} \frac{\eta}{\sigma_n^2} \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 \sigma_n^2}\right ] \,{\rm d} \eta \hspace{0.05cm}.$$
  • Mit der Substitution   $x^2 = \eta^2/(2\sigma_n^2)$   kann hierfür geschrieben werden:
$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty} = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
  • Hierbei wurde das vorne angegebene unbestimmte Integral benutzt.  Insbesondere gilt:
$${\rm Pr}(y > \sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 0.5} \hspace{0.15cm} \underline{\approx 60.7 \%} \hspace{0.05cm},$$
$$ {\rm Pr}(y > 2\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 2.0} \hspace{0.15cm} \underline{\approx 13.5 \%} \hspace{0.05cm},$$
$$ {\rm Pr}(y > 3\sigma_n) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{ - 4.5} \hspace{0.15cm} \underline{\approx 1.1 \%} \hspace{0.05cm}.$$