Aufgabe 1.5: SPC (5, 4) und BEC–Modell

Aus LNTwww
(Weitergeleitet von 1.5 SPC (5, 4) und BEC–Modell)
Wechseln zu:Navigation, Suche

Codeworte des  $\rm SPC \ (5, 4)$

Für diese Aufgabe wird vorausgesetzt:

  • Der  Single Parity–check Code mit den Parametern  $k = 4$  und  $n = 5$    ⇒   $\rm SPC \ (5, 4)$  fügt zu den Informationsbits  $u_{1}$, ... ,  $u_{4}$  ein Prüfbit  $p$  hinzu, so dass in jedem Codewort  $\underline{x}$  eine gerade Anzahl von Einsen vorkommt:
$$x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 = 0 \hspace{0.05cm},$$
$$ u_1 \oplus u_2 \oplus u_3 \oplus u_4 \oplus p = 0 \hspace{0.05cm}.$$
  • Der  Binary Erasure Channel  (BEC) – mit binären Eingangswerten  $x_{i} \in \{0, \ 1\}$  und ternärem Ausgang  $y_{i} \in \{0, 1, \rm E\}$  führt mit Wahrscheinlichkeit  $\lambda = 0.1$  zu einer Auslöschung (englisch:   Erasure), abgekürzt mit  $\rm E$.
  • Weiterhin gilt  ${\rm Pr}(y_{i} = x_{i}) = 1 - \lambda = 0.9$. Ein echter Übertragungsfehler wird ausgeschlossen:
$$ {\rm Pr} \big[(x_i = 0)\cap (y_i = 1)\big] = {\rm Pr} \big[(x_i = 1)\cap (y_i = 0)\big] = 0\hspace{0.05cm}.$$

Der Zusammenhang zwischen dem Informationswort  $\underline{u}$  und dem Codewort  $\underline{x}$  ist durch die Tabelle gegeben. Aus dem Empfangswort  $\underline{y}$  wird durch Maximum–Likelihood–Entscheidung der Vektor  $\underline{v}$  der Informationsbits an der Sinke gebildet, der möglichst mit dem Informationswort  $\underline{u}$  übereinstimmen sollte.

Es gelte die folgende Nomenklatur:

$$\underline{u} \ \in \ \{\underline{u}_0, \underline{u}_1,\hspace{0.15cm} \text{...} \hspace{0.2cm}, \underline{u}_{15}\} \hspace{0.05cm},$$
$$ \underline{v} \ \in \ \{\underline{v}_0, \underline{v}_1, \hspace{0.15cm}\text{...} \hspace{0.2cm}, \underline{v}_{15}, \underline{\rm E}\} \hspace{0.05cm}.$$

Das Ergebnis  $\underline{v} =\underline{\rm E} = {\rm (E, E, E, E)}$  kennzeichnet dabei, dass aufgrund zu vieler Auslöschungen eine Decodierung des Codewortes nicht möglich ist.




Hinweise:



Fragebogen

1

Wie lautet für die folgenden Informationsworte  $\underline{u}$  jeweils das Prüfbit  $p$?

$\underline{u} = \underline{u_{0}}\text{:}\hspace{0.4cm}p \ = \ $

$\underline{u} = \underline{u_{4}}\text{:}\hspace{0.4cm}p \ = \ $

$\underline{u} = \underline{u_{13}}\text{:}\hspace{0.25cm}p \ = \ $

2

Es sei  $ \underline{y} = (0, 0, 0, 0, {\rm E})$. Welches Informationswort wurde gesendet?

$ \underline{u}_{0}$,
$ \underline{u}_{4}$,
$ \underline{u}_{13}$.

3

Es sei  $ \underline{y} = (0, {\rm E}, 0, 0, 1)$. Welches Informationswort wurde gesendet?

$\underline{u}_{0}$,
$\underline{u}_{4}$,
$\underline{u}_{13}$.

4

Mit welcher Wahrscheinlichkeit stimmt  $\underline{y}$  mit dem Codewort  $\underline{x}$  überein?

$\ {\rm Pr} (\underline{y} = \underline{x}) \ = \ $

$\ \%$

5

Mit welcher Wahrscheinlichkeit stimmen die beiden Vekoren  $\underline{u}$  und  $\underline{v}$  überein?

$\ {\rm Pr} (\underline{v} = \underline{u}) \ = \ $

$\ \%$

6

Wie groß ist die Wahrscheinlichkeit für einen erkannten Fehler?

$\ {\rm Pr} (\underline{\upsilon} = {\rm {\underline{ E}}}) \ = \ $

$\ \%$


Musterlösung

(1)  Das Prüfbit $p$ wird beim Single Parity–check Code so bestimmt, dass die Summe aller Einsen im Codewort $\underline{x} = (u_{1}, u_{2}, ... , u_{4}, p)$ geradzahlig ist.
Beispielsweise erhält man:

$$\underline{u}_0 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (0, 0, 0, 0) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}_0 = (0, 0, 0, 0, 0)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0} \hspace{0.05cm},$$
$$ \underline{u}_4 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (0, 1, 0, 0) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}_4 = (0, 1, 0, 0, 1)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 1} \hspace{0.05cm},$$
$$\underline{u}_{13} \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (1, 1, 0, 1) \hspace{0.15cm} \Rightarrow \hspace{0.15cm} \underline{x}_{13} = (1, 1, 0, 1, 1)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 1} \hspace{0.05cm}.$$


(2)  Richtig ist die Antwort 1:

  • Aufgrund der Tatsache, dass die Anzahl der Einsen geradzahlig sein muss, ist das ausgelöschte Prüfbit $p = 0$. Gesendet wurde also $\underline{u}_{0}$.


(3)  Richtig ist die Antwort 2:

  • Nach gleichen Überlegungen wie in der letzten Teilaufgabe kommt man für $\underline{y} = (0, {\rm E}, 0, 0, 1)$ zum Ergebnis
$$\underline{x} = \underline{x}_{4} = (0, 1, 0, 0, 1) ⇒ \underline{u}_{4} = (0, 1, 0, 0).$$


(4)  Das Ereignis $\underline{y} = \underline{x}$ tritt nur dann auf, wenn durch den BEC–Kanal keines der $n = 5$ Codebits ausgelöscht wird:

$${\rm Pr}(\underline{y} = \underline{x}) = (1 - \lambda)^5 = 0.9^5 \hspace{0.15cm} \underline{= 59.1\%} \hspace{0.05cm}.$$


(5)  Das Ereignis $v = u$ tritt dann auf,

  • wenn alle Codebits richtig übertragen werden   ⇒   ${\rm Pr}(\underline{y} = \underline{x})$,
  • aber auch dann, wenn nur ein Codebit ausgelöscht wird. Entsprechend der Binominalverteilung gibt es hierfür 5 Möglichkeiten:
$${\rm Pr}(\underline{v} = \underline{u}) \hspace{-0.1cm}\ = \ \hspace{-0.1cm} {\rm Pr}(\underline{y} = \underline{x}) + 5 \cdot (1 - \lambda)^4 \cdot \lambda = 0.591 + 5 \cdot 0.656^4 \cdot 0.1 \hspace{0.15cm} \underline{= 91.9 \%} \hspace{0.05cm}.$$


(6)  Aufgrund des BEC–Modells ist die Verfälschung eines Codewortes $\underline{x}$ per se ausgeschlossen, da keines der Bit von $0 → 1$ bzw. von $1 → 0$ verfälscht werden kann. Vielmehr gilt:

$${\rm Pr}(\underline{v} = \underline{u}) + {\rm Pr}(\underline{v} = {\rm\underline{ E}}) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(\underline{v} = {\rm\underline{ E}}) = 1 - {\rm Pr}(\underline{v} = \underline{u}) \hspace{0.15cm} \underline{= 8.1\%} \hspace{0.05cm}.$$