Aufgabe 2.4Z: Tiefpass-Einfluss bei Synchrondemodulation

Aus LNTwww
Wechseln zu:Navigation, Suche

Signale bei ZSB–AM und Synchrondemodulation

Wir betrachten das gleiche Übertragungssystem wie in  Aufgabe 2.4.  Es wird nun allerdings stets eine perfekte Frequenz– und Phasensynchronisation des Synchrondemodulators  $\rm (SD)$  vorausgesetzt.

Das Quellensignal  $q(t)$, das Sendesignal  $s(t)$  sowie das Signal  $b(t)$  vor dem Tiefpassfilter innerhalb des Synchrondemodulators sind wie folgt gegeben:

$$q(t) = q_1(t) + q_2(t)\hspace{0.2cm}{\rm mit }$$
$$q_1(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
$$q_2(t) = 1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
$$s(t) = q(t) \cdot \sin(2 \pi \cdot 50\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
$$b(t) = s(t) \cdot 2 \cdot \sin(2 \pi \cdot 50\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$

Die Grafik zeigt oben das Quellensignal  $q(t)$  und in der Mitte das Sendesignal  $s(t)$.

In der letzten Skizze ist das Sinkensignal  $v(t)$  dargestellt (violetter Kurvenverlauf).

  • Dieses stimmt offensichtlich nicht mit dem Quellensignal (blau-gestrichelte Kurve) überein.
  • Der Grund für das unerwünschte Ergebnis  $v(t) ≠ q(t)$  könnte zum Beispiel ein fehlender oder falsch dimensionierter Tiefpass sein.


In den Teilaufgaben  (3)  und  (4)  wird der so genannte  Trapeztiefpass  verwendet, dessen Frequenzgang wie folgt lautet:

$$H_{\rm E}(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1 \\ \frac{f_2 -|f|}{f_2 -f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\hspace{0.94cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_1,} \\ {f_1 \le \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\hspace{0.94cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > f_2.} \\ \end{array}$$





Hinweise:



Fragebogen

1

Welche Aussagen sind über das Filter  $H_{\rm E}(f)$  möglich,  das zur Gewinnung des auf der Angabenseite dargestellten Sinkensignals benutzt wurde?

Die obere Grenzfrequenz ist zu hoch.
Die obere Grenzfrequenz ist zu niedrig.
Die untere Grenzfrequenz ist ungleich Null.

2

Mit welchen der nachfolgend aufgeführten Tiefpassfunktionen ist eine ideale Demodulation – das heißt  $v(t) = q(t)$  – prinzipiell möglich?

Rechtecktiefpass,
Gaußtiefpass,
Trapeztiefpass,
Spalttiefpass.

3

Wie ist die untere Eckfrequenz  $f_1$  eines Trapeztiefpasses mindestens zu wählen,  damit keine Verzerrungen entstehen?

$f_{\text{1, min}} \ = \ $

$\ \text{kHz}$

4

Wie groß darf die obere Eckfrequenz  $f_2$  des Trapeztiefpasses höchstens sein,  damit keine Verzerrungen entstehen?

$f_{\text{2, max}} \ = \ $

$\ \text{kHz}$

5

Welche Grenzfrequenz  $f_{\rm G}$  eines idealen, rechteckförmigen Tiefpasses würden Sie wählen,  wenn Rauschstörungen nicht zu vernachlässigen sind?

$f_{\rm G} = 4 \ \rm kHz$,
$f_{\rm G} = 6 \ \rm kHz$,
$f_{\rm G} = 10 \ \rm kHz$.


Musterlösung

(1)  Richtig ist die  erste Aussage:

  • Das dargestellte Sinkensignal  $v(t)$  stimmt exakt mit dem als Gleichung gegebenen Signal  $b(t)$  überein und enthält somit auch Anteile um die doppelte Trägerfrequenz.
  • Das Filter  $H_{\rm E}(f)$  fehlt entweder ganz oder dessen obere Grenzfrequenz  $f_2$  ist zu hoch.
  • Bezüglich der unteren Grenzfrequenz  $f_1$  ist nur die Aussage möglich,  dass diese kleiner ist als die kleinste im Signal  $b(t)$  vorkommende Frequenz  $\text{(2 kHz)}$.
  • Ob ein Gleichanteil durch das Filter entfernt wird oder nicht,  ist unklar,  da ein solcher im Signal  $b(t)$  nicht enthalten ist.


(2)  Richtig sind die  Aussagen 1 und 3:

  • Voraussetzung für eine verzerrungsfreie Demodulation ist,  dass bis zu einer bestimmten Frequenz  $f_1$  alle Spektralanteile gleich und möglichst ungedämpft übertragen werden und alle Anteile bei Frequenzen  $f > f_2$  vollständig unterdrückt werden.
  • Der Rechteck– und der Trapeztiefpass erfüllen diese Bedingung.


(3)  Sichergestellt werden muss,  dass der  $\text{5 kHz}$–Anteil noch im Durchlassbereich liegt:

$$f_{\text{1, min}}\hspace{0.15cm}\underline{ =5 \ \rm kHz}.$$


(4)  Alle Spektralanteile in der Umgebung der doppelten Trägerfrequenz – genauer gesagt zwischen  $\text{95 kHz}$  und  $\text{ 105 kHz}$  – müssen vollständig unterdrückt werden:

$$f_{\text{2, max}}\hspace{0.15cm}\underline{ =95 \ \rm kHz}.$$
  • Ansonsten würde es zu nichtlinearen Verzerrungen kommen.


(5)  Richtig ist der Lösungsvorschlag 2:

  • Die Grenzfrequenz}  $f_{\rm G} = \text{ 4 kHz}$  hätte (lineare) Verzerrungen zur Folge,  da dann der  $\text{5 kHz}$–Anteil abgeschnitten würde.
  • Zu bevorzugen ist der Tiefpass mit der Grenzfrequenz  $f_{\rm G} = \text{6 kHz}$,  da mit  $f_{\rm G} = \text{10 kHz}$  dem Nutzsignal $v(t)$  mehr Rauschanteile überlagert wären.