Der so genannte Zweiwegekanal wird durch folgende Impulsantwort charakterisiert $($mit $T_1 < T_2)$:
- $$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( t - T_2).$$
- Bis auf wenige Kombinationen der Systemparameter $z_1$, $T_1$, $z_2$ und $T_2$ wird dieser Kanal zu linearen Verzerrungen führen.
- Man spricht nur dann von einem verzerrungsfreien Kanal, wenn durch ihn kein einziges Eingangssignal verzerrt wird.
- Das bedeutet: Auch beim Zweiwegekanal kann es Sonderfälle geben, bei denen tatsächlich $y(t) = \alpha \cdot x(t - \tau)$ gilt.
Als Testsignale werden an den Systemeingang angelegt:
- ein Diracpuls $x_1(t)$ im Zeitabstand $T_0 = 1 \ \rm ms$, dessen Spektralfunktion $X_1(f)$ ebenfalls ein Diracpuls ist,
und zwar mit Abstand $f_0 = 1/T_0 = 1 \ \rm kHz$:
- $$x_1(t) = \sum_{n = - \infty}^{+\infty} \delta ( t - n \cdot T_0) ,\hspace{0.5cm} X_1(f) = T_0 \cdot \sum_{k = - \infty}^{+\infty} \delta ( f - k \cdot f_0) ,$$
- ein Cosinussignal mit der Frequenz $f_2 = 250 \ \rm Hz$:
- $$x_2(t) = \cos(2 \pi \cdot f_2 \cdot t) ,$$
- die Summe zweier Cosinussignale mit den Frequenzen $f_2 = 250 \ \rm Hz$ und $f_3 = 1250 \ \rm Hz$:
- $$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Lineare Verzerrungen.
- Um Ihnen Rechnungen zu ersparen, geben wir das Ergebnis für den Parametersatz $\big [z_1 = 1$, $T_1 = 0$, $z_2 =0.5$, $T_2 = 1 \ \rm ms\big ]$ an:
- $$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$
Fragebogen
Musterlösung
(1) Richtig sind die Aussagen 1 und 2:
- Mit $z_1 = 1$, $T_1 = 0$, $z_2 =0$ ist $h(t) = \delta(t)$ und dementsprechend $H(f) = 1$, so dass stets $y(t) = x(t)$ gelten wird.
- Jede verzerrungsfreie Kanalimpulsantwort $h(t)$ besteht aus einer einzigen Diracfunktion,  zum Beispiel bei $t = T_1$.
- Dieser Fall ist im Modell durch $z_2 =0$ berücksichtigt. Damit lautet der Frequenzgang:
- $$H(f)= z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$
- Dagegen wird der Kanal immer dann zu linearen Verzerrungen führen, wenn gleichzeitig $z_1$ und $z_2$ von Null verschieden sind.
(2) Die Fouriertransformation der Impulsantwort $h(t)$ führt auf die Gleichung:
- $$H(f) = z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2} .$$
- Mit $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$ und $T_2 = 1 \ \rm ms$ erhält man daraus:
- $$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$
- Aufgeschlüsselt nach Real– und Imaginärteil liefert dies:
- $${\rm Re}\big[H(f)\big] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Re}[H(f = f_1 =1 \ \rm kHz)] = 1.5}, $$
- $${\rm Im}\big[H(f)\big] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Im}\big[H(f = f_1 =1 \ \rm kHz)\big] = 0}, $$
(3) Richtig ist nur die erste Antwort:
- Aus (2) folgt für alle Vielfachen von $f_1 =1 \ \rm kHz$ ⇒ $f= n \cdot f_1$ die Betragsfunktion $|H(f)| = 1.5$ und die Phasenfunktion $b(f) \equiv 0$.
- Damit ist für diese diskreten Frequenzwerte auch die Phasenlaufzeit jeweils Null.
- Da aber das Spektrum $X_1(f)$ des Diracpulses genau bei diesen Frequenzen Spektrallinien aufweist, gilt $y_1(t) = 1.5 \cdot x_1(t)$.
(4) Die Betragsfunktion lautet:
- $$|H(f)| = \sqrt{{\rm Re}[H(f)]^2 + {\rm Im}[H(f)]^2} $$
- $$\Rightarrow \; |H(f)| = \sqrt{1 + 0.25 \cdot \cos^2(2 \pi f \cdot T_2)+ \cos(2 \pi f \cdot T_2) + 0.25 \cdot \sin^2(2 \pi f \cdot T_2)} = \sqrt{1.25 + \cos(2 \pi f \cdot T_2) }.$$
- Für die Frequenz $f_2 =0.25 \ \rm kHz$ erhält man somit:
- $$|H(f)| = \sqrt{1.25 + \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$
- Die Phasenfunktion lautet allgemein bzw. bei der Frequenz $f_2 =0.25 \ \rm kHz$:
- $$b(f) = - {\rm arctan}\hspace{0.1cm}\frac{{\rm Im}[H(f)]}{{\rm Re}[H(f)]} = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(2 \pi f T_2)}{1+0.5 \cdot \cos(2 \pi f T_2)},$$
- $$b(f = f_2) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( \pi/2)}{1+0.5 \cdot \cos(\pi/2)}={\rm arctan}\hspace{0.1cm}\frac{0.5}{1} = 0.464.$$
- Damit beträgt die Phasenlaufzeit für diese Frequenz:
- $$\tau_2 = \frac {b(f_2)}{2 \pi f_2} = \frac {0.464}{2 \pi \cdot 0.25\,{\rm kHz}} \approx 0.3\,{\rm ms},$$
- Für das Ausgangssignal gilt somit:
- $$y_2(t) = 1.118 \cdot \cos(2 \pi \cdot 0.25\,{\rm kHz}\cdot (t - 0.3\,{\rm ms})).$$
- Der Signalwert zum Nullzeitpunkt ist somit:
- $$y_2(t=0) = 1.118 \cdot \cos(-2 \pi \cdot 0.25\,{\rm kHz} \cdot 0.3\,{\rm ms}) \approx 1.118 \cdot 0.891 \hspace{0.15cm}\underline{= 0.996}.$$
(5) Beide Frequenzen haben den gleichen Dämpfungsfaktor $\alpha = 1.118$ , daher sind keine Dämpfungsverzerrungen festzustellen.
- Mit $f_3 = 1.25 \ \rm kHz$ und $T_2 = 1 \ \rm ms$ ergibt sich für die Phasenfunktion:
- $$b(f = f_3) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( 2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$
- also genau der gleiche Wert wie bei der Frequenz $f_2 = 0.25 \ \rm kHz$.
- Trotzdem kommt es aber nun zu Phasenverzerrungen, da für $f_3$ die Phasenlaufzeit nur mehr $\tau = 60 \ µ \rm s$ beträgt.
- Für das Ausgangssignal kann also geschrieben werden:
- $$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm ms}) + 1.118 \cdot \cos(2 \pi f_3 \cdot (t - 0.06\,{\rm ms})$$
- $$\Rightarrow \; \; y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot t - 27^\circ) + 1.118 \cdot \cos(2 \pi f_3 \cdot t - 27^\circ).$$
Richtig ist demnach die Antwort 3:
- Es gibt also Phasenverzerrungen, obwohl für beide Schwingungen die gleichen Phasenwerte $\varphi_2 = \varphi_3= 27^\circ$ gelten.
- Damit keine Phasenverzerrungen auftreten, müssten
- die Phasenlaufzeiten $\tau_2$ und $\tau_3$ gleich sein, und
- die Phasenwerte $\varphi_2$ und $\varphi_3$ linear mit den zugehörigen Frequenzen ansteigen.