Aufgabe 3.12Z: Ring und Rückkopplung

Aus LNTwww
(Weitergeleitet von 3.12Z Ring und Rückkopplung)
Wechseln zu:Navigation, Suche

Ring und Rückkopplung im Zustandsübergangsdiagramm

Um die Pfadgewichtsfunktion  $T(X)$  eines Faltungscodes aus dem Zustandsübergangsdiagramm bestimmen zu können, ist es erforderlich, das Diagramm so zu reduzieren, bis es durch eine einzige Verbindung vom Startzustand zum Endzustand dargestellt werden kann.

Im Zuge dieser Diagrammreduktion können auftreten:

  • serielle und parallele Übergänge,
  • ein Ring entsprechend der obigen Skizze,
  • eine Rückkopplung entsprechend der unteren Skizze.


Für diese beiden Graphen sind die Entsprechungen  $E(X, \, U)$  und  $F(X, \, U)$  in Abhängigkeit der angegebenen Funktionen  $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$  zu ermitteln.





Hinweise:



Fragebogen

1

Welche der aufgeführten Übergänge sind beim Ring möglich?

$S_1 → S_2 → S_3$,
$S_1 → S_2 → S_2 → S_2 → S_3$,
$S_1 → S_2 → S_1 → S_2 → S_3$.

2

Wie lautet die Ersetzung  $E(X, \, U)$  eines Ringes?

$E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$.

3

Welche der aufgeführten Übergänge sind bei Rückkopplung möglich?

$S_1 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_2 → S_3 → S_4$.

4

Wie lautet die Ersetzung  $F(X, \, U)$  einer Rückkopplung?

$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Allgemein ausgedrückt: Man geht zunächst von $S_1$ nach $S_2$, verbleibt $j$–mal im Zustand $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$ und geht abschließend von $S_2$ nach $S_3$ weiter.


(2)  Richtig ist der Lösungsvorschlag 2:

  • Entsprechend den Ausführungen zur Teilaufgabe (1) erhält man für die Ersetzung des Ringes
$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] \hspace{0.05cm}.$$
  • Der Klammerausdruck ergibt $1/(1 \, –C)$.
$$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$


(3)  Richtig sind die Lösungsvorschläge 1, 3 und 4:

  • Man geht zunächst von $S_1$ nach $S_2 \ \Rightarrow \ A(X, \, U)$,
  • dann von $S_2$ nach $S_3 \ \Rightarrow \ C(X, \, U)$,
  • anschließend $j$–mal zurück nach $S_2$ und wieder nach $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
  • abschließend von $S_3$ nach $S_4 \ \Rightarrow \ B(X, \, U)$,


(4)  Richtig ist also der Lösungsvorschlag 1:

  • Entsprechend der Musterlösung zur Teilaufgabe (3) gilt:
$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
  • Hierbei beschreibt $E(X, \, U)$ den Weg „$j$–mal” zurück nach $S_2$ und wieder nach $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
$$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.$$