Aufgabe 3.6: Transversalfilter des Optimalen Nyquistentzerrers
Aus LNTwww
(Weitergeleitet von 3.6 Transversalfilter des Optimalen Nyquistentzerrers)
Am Eingang des in der Grafik gezeigten symmetrischen Transversalfilters zweiter Ordnung $(N = 2)$ liegt ein Dreieckimpuls (auf $1$ normiert):
- $$g_x(t) = \left\{ \begin{array}{c} 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{(2T)} \\ \\ 0 \\ \end{array} \right. \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ \\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c}|\hspace{0.05cm}t\hspace{0.05cm}| \le 2\hspace{0.05cm}T, \\ \\ |\hspace{0.05cm}t\hspace{0.05cm}| \ge 2\hspace{0.05cm}T. \\ \end{array}$$
- Sind alle Filterkoeffizienten $k_0$, $k_1$ und $k_2$ ungleich Null, so gilt für den Impuls am Ausgang:
- $$g_y(t) \ = k_0 \cdot g_x(t) + k_1 \cdot \big[ g_x(t-T)+ g_x(t+T) \big] + k_2 \cdot \big[ g_x(t-2T)+ g_x(t+2T) \big]\hspace{0.05cm}.$$
- Durch geeignete Wahl der Filterkoeffizienten $k_0$, $k_1$ und $k_2$ kann der Ausgangsimpuls folgende Bedingungen erfüllen:
- $$g_0 = g_y(t = 0) = 1,\hspace{0.2cm}g_1 = g_y(t = \pm T) = 0,\hspace{0.2cm}g_2 = g_y(t = \pm 2 T) = 0 \hspace{0.05cm}.$$
- Ein Filter erster Ordnung $(N = 1)$ ergibt sich aus obiger Anordnung und Gleichung mit dem Koeffizienten $k_2 = 0$.
- Durch geeignete Wahl von $k_0$ und $k_1$ kann dann $g_0 = 1$ und $g_1 = 0$ erreicht werden.
- Allerdings wird in diesem Fall stets $g_2 ≠ 0$ sein.
Hinweis: Die Aufgabe gehört zum Kapitel "Linare Nyquistentzerrung".
Fragebogen
Musterlösung
(1) Der Eingangsimpuls $g_x(t)$ ist durch folgende Abtastwerte bei Vielfachen von $T$ gegeben:
- $$g_x(t = 0) = 1,\hspace{0.2cm}g_x(t = \pm T) = 0.5,\hspace{0.2cm}g_x(t = \pm 2 T) = ... = 0 \hspace{0.05cm}.$$
- Damit kann folgendes Gleichungssystem aufgestellt werden:
- $$t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} k_0 \cdot 1.0 + k_1 \cdot 2 \cdot 0.5 = 1\hspace{0.05cm},$$
- $$t = T\hspace{-0.1cm}:\hspace{0.2cm}g_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} k_0 \cdot 0.5 + k_1 \cdot 1.0 = 0 \hspace{0.05cm}.$$
- Aus diesen Gleichungen folgt $k_0 \ \underline {= \ 2}$ und $k_1 \ \underline {= \ –1}$.
(2) Die Werte $g_0 = 1$ und $g_1 = 0$ wurden bereits der Optimierung zugrundegelegt und sind deshalb unbestritten.
- Zur Zeit $t = 2T$ ergibt sich am Ausgang, wobei $k_{-1} = k_1 = -1$ zu berücksichtigen ist:
- $$g_2 = g_y(t = 2 T) = g_x(t = T) \cdot k_{-1}\hspace{0.15cm}\underline { = -0.5 = g_{-2}} \hspace{0.05cm}.$$
- Da alle Eingangswerte zu den Zeiten $2T$, $3T$ und $4T$ Null sind, ist $g_3 = g_y(t = 3T) \underline {= \ 0}$.
- Damit ergibt sich der Ausgangsimpuls $g_y(t)$ gemäß der Skizze.
(3) Bei einem Filter zweiter Ordnung lautet das Gleichungssystem:
- $$t = 2T\hspace{-0.1cm}:\hspace{0.2cm}g_2 = k_1 \cdot 0.5 + k_2 \cdot 1.0 = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} k_2 = - 0.5 \cdot k_1\hspace{0.05cm},$$
- $$t = T\hspace{-0.1cm}:\hspace{0.2cm}g_1= k_0 \cdot 0.5 +k_1 \cdot 1.0 + k_2 \cdot 0.5 = 0\hspace{0.05cm},$$
- $$\hspace{1.6cm}\Rightarrow \hspace{0.3cm} k_1 = - {2}/{3} \cdot k_0\hspace{0.05cm},$$
- $$t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0 = k_0 \cdot 1.0 + k_1 \cdot 0.5 + k_1 \cdot 0.5 = 1\hspace{0.05cm},$$
- $$\hspace{1.6cm}\Rightarrow \hspace{0.3cm} k_0 = 3 \hspace{0.05cm}.$$
- Damit sind die optimalen Koeffizienten
- $$k_0 \ \underline {= \ 3},k_1 \ \underline {= \ –2}, k_2 \ \underline {= \ 1}.$$
(4) Bei analoger Vorgehensweise wie in der Teilaufgabe (2) erhält man $g_4 \ \underline {= \ 0}$ sowie
- $$g_3 = g_y(t = 3 T) = g_x(t = T) \cdot k_{-2} = 0.5 \cdot 1 \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
- Die beiden Grafiken zeigen allerdings auch, dass bei der hier vorliegenden Dreickform die optimale Nyquistentzerrung keine Verbesserung bringt.
- Das Auge ist in allen Fällen gerade geschlossen:
- $$N = 0\hspace{-0.1cm}:\hspace{0.2cm} \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} g_0 - 2 \cdot g_1 = 1- 2 \cdot 0.5 = 0 \hspace{0.05cm}, $$
- $$N = 1\hspace{-0.1cm}:\hspace{0.2cm} \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} g_0 - 2 \cdot |g_2 | = 1- 2 \cdot 0.5 = 0 \hspace{0.05cm}, $$
- $$N = 2\hspace{-0.1cm}:\hspace{0.2cm} \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} g_0 - 2 \cdot g_3 = 1- 2 \cdot 0.5 = 0 \hspace{0.05cm}.$$