Aufgabe 4.11: On-Off-Keying und Binary Phase Shift Keying

Aus LNTwww
Wechseln zu:Navigation, Suche

Zwei Signalraumkonstellation für OOK und BPSK

Die Grafik zeigt Signalraumkonstellationen für trägermodulierte Modulationsverfahren:

  • "On–Off–Keying"  $\rm (OOK)$,  in manchen Büchern auch als  "Amplitude Shift Keying"  $\rm (ASK)$  bezeichnet,
  • "Binary Phase Shift Keying"  $\rm (BPSK)$.


Für die Berechnung der Fehlerwahrscheinlichkeit gehen wir vom AWGN–Kanal aus.  In diesem Fall ist die Fehlerwahrscheinlichkeit  (bezogen auf Symbole oder auf Bit gleichermaßen):

$$p_{\rm S} = p_{\rm B} = {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right ) \hspace{0.05cm}.$$

Hierbei bezeichnet

  • $d$  den Abstand der Signalraumpunkte,  und
  • $\sigma_n^2 = N_0/2$  die Varianz des AWGN–Rauschens.


In den Teilfragen ab Teilaufgabe  (3)  wird zudem auf die mittlere Symbollenergie  $E_{\rm S}$  Bezug genommen.




Hinweise:

  • Verwenden Sie für die komplementäre Gaußsche Fehlerfunktion die folgende Näherung:
$${\rm Q}(x) \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$



Fragebogen

1

Wieviele Bit  $(b)$  stellt jeweils ein Symbol dar?  Wie groß ist die Stufenzahl  $M$?

$b \hspace{0.35cm} = \ $

$M \ = \ $

2

Welche Darstellung zeigen die Signalraumkonstellationen?

Die Darstellung im (tatsächlichen) Bandpassbereich,
die Darstellung im (äquivalenten) Tiefpassbereich.

3

Welche Fehlerwahrscheinlichkeit ergibt sich für  "On–Off–Keying"  abhängig von  $E_{\rm S}/N_0$?

$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –4}$
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –4}$

4

Welche Fehlerwahrscheinlichkeit ergibt sich für  "Binary Phase Shift Keying"  abhängig von  $E_{\rm S}/N_0$?

$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –8}$
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –8}$


Musterlösung

(1)  Sowohl  "On–Off–Keying" als auch  "Binary Phase Shift Keying"  sind binäre Modulationsverfahren:

$$\underline{b = 1 }\hspace{0.05cm},\hspace{0.5cm} \underline{M = 2} \hspace{0.05cm}.$$


(2)  Richtig ist der  Lösungsvorschlag 2,  erkennbar an der imaginären Basisfunktion  $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.

  • Bei Beschreibung im Bandpassbereich wären die Basisfunktionen reell: cosinusförmig und (minus–)sinusförmig.


(3)  Die vorgegebene Gleichung lautet bei  "On–Off–Keying"  mit

  • $d = \sqrt {E}$,
  • $E_{\rm S} = E/2$  (wobei gleichwahrscheinliche Symbole  $\boldsymbol{s}_0$  und  $\boldsymbol{s}_1$  vorausgesetzt sind),
  • $\sigma_n^2 = N_0/2$:
$$p_{\rm S} \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right )= {\rm Q} \left ( \frac{ \sqrt{E}/2}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ \frac{ E/2}{ N_0} }\right ) = {\rm Q} \left ( \sqrt{ { E_{\rm S}}/{ N_0} }\right ) \hspace{0.05cm}.$$
  • Für  $E_{\rm S}/N_0 = 9 = 3^2$  ergibt sich somit:
$$p_{\rm S} = {\rm Q} (3) \approx \frac{1}{\sqrt{2\pi} \cdot 3} \cdot {\rm e}^{-9/2} = \underline{14.8 \cdot 10^{-4}} \hspace{0.05cm}.$$
  • Entsprechend gilt für  $10 \cdot {\rm lg} \, (E_{\rm S}/N_0) = 12 \ \rm dB$  ⇒  $E_{\rm S}/N_0 = 15.85$:
$$p_{\rm S} = {\rm Q} (\sqrt{15.85}) \approx \frac{1}{\sqrt{2\pi\cdot 15.85} } \cdot {\rm e}^{-15.85/2} = \underline{0.362 \cdot 10^{-4}} \hspace{0.05cm}.$$


(4)  Im Unterschied zur Teilaufgabe  (3)  gilt bei  "Binary Phase Shift Keying":

  • $d = 2 \cdot \sqrt {E}$,
  • $E_{\rm S} = E$,


beides sogar unabhängig von den Auftrittswahrscheinlichkeiten für  $\boldsymbol{s}_0$  und  $\boldsymbol{s}_1$.

  • Daraus folgt:
$$p_{\rm S} = {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ { 2E_{\rm S}}/{ N_0} }\right ) \hspace{0.05cm}.$$
  • Mit  $E_{\rm S}/N_0 = 9$  ergibt sich daraus der Zahlenwert:
$$p_{\rm S} = {\rm Q} (\sqrt{18}) \approx \frac{1}{\sqrt{2\pi\cdot 18} } \cdot {\rm e}^{-18/2} = \underline{117 \cdot 10^{-8}} \hspace{0.05cm}.$$
  • Und mit  $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ \rm dB$  ⇒  $2E_{\rm S}/N_0 = 31.7$:
$$p_{\rm S} = {\rm Q} (\sqrt{31.7}) \approx \frac{1}{\sqrt{2\pi\cdot 31.7} } \cdot {\rm e}^{-31.7/2} = \underline{0.926 \cdot 10^{-8}}\hspace{0.05cm}.$$