Aufgabe 4.1Z: L–Werte des BEC–Modells

Aus LNTwww
Wechseln zu:Navigation, Suche

BEC–Kanalmodell

Wir betrachten das so genannte  BEC–Kanalmodell  (Binary Erasure Channel) mit

  • der Eingangsgröße  $x ∈ \{+1, \, -1\}$,
  • der Ausgangsgröße  $y ∈ \{+1, \, -1, \, {\rm E}\}$, und
  • der Auslöschungswahrscheinlichkeit  $\lambda$.


Hierbei bedeutet  $y = {\rm E}$  (Erasure), dass der Ausgangswert  $y$  weder als  $+1$  noch als  $-1$  entschieden werden konnte.

Bekannt sind zudem die Eingangswahrscheinlichkeiten

$${\rm Pr}(x = +1) = 3/4\hspace{0.05cm}, \hspace{0.5cm}{\rm Pr}(x = -1) = 1/4\hspace{0.05cm}.$$

Das  Log–Likelihood–Verhältnis  (kurz:  $L$–Wert, englisch:  Log Likelihood Ratio, LLR) der binären Zufallsgröße  $x$  ist bei bipolarer Betrachtungsweise wie folgt gegeben:

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}\hspace{0.05cm}.$$

Entsprechend gilt für den bedingten  $L$–Wert in Vorwärtsrichtung für alle  $y ∈ \{+1, \, -1, \, {\rm E}\}$:

$$L(y\hspace{0.05cm}|\hspace{0.05cm}x) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = -1)} \hspace{0.05cm}. $$





Hinweise:



Fragebogen

1

Wie lautet der  $L$–Wert der Eingangsgröße  $x$?

$L(x) \ = \ $

2

Welcher Wahrscheinlichkeit  ${\rm Pr}(x = \, -1)$  entspricht  $L(x) = \, -2$?

${\rm Pr}(x = \, -1) \ = \ $

3

Berechnen Sie den bedingten  $L$–Wert  $L(y = {\rm E}\hspace{0.05cm} |\hspace{0.05cm} x)$  in Vorwärtsrichtung.

$L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) \ = \ $

4

Welche Aussagen gelten für die beiden anderen bedingten  $L$–Wert?

$L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$  ist positiv unendlich.
$L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$  ist negativ und betragsmäßig unendlich groß.
Es gilt  $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x) = L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x) = 0$.

5

Unter welchen Voraussetzungen gelten die Ergebnisse aus (3) und (4)?

Für  $0 ≤ \lambda ≤ 1$.
Für  $0 < \lambda ≤ 1$.
Für  $0 ≤ \lambda < 1$.
Für  $0 < \lambda < 1$.


Musterlösung

(1)  Mit den gegebenen Symbolwahrscheinlichkeiten ${\rm Pr}(x = +1) = 3/4$ und ${\rm Pr}(x = -1) = 1/4$ erhält man:

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)} ={\rm ln} \hspace{0.15cm} \frac{3/4}{1/4}\hspace{0.15cm}\underline{= 1.099}\hspace{0.05cm}.$$


(2)  Entsprechend der Definition

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}$$

ergibt sich für $L(x) = \, -2$ die folgende Bestimmungsgleichung:

$$\hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{1-{\rm Pr}(x = +1)} \stackrel{!}{=}{\rm e}^{-2} \approx 0.135 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} 1.135 \cdot {\rm Pr}(x = +1)\stackrel{!}{=}0.135\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(x = +1) = 0.119\hspace{0.05cm},\hspace{0.4cm}{\rm Pr}(x = -1) \hspace{0.15cm}\underline{= 0.881}\hspace{0.05cm}. $$


(3)  Für den bedingten $L$–Wert $L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x)$ in Vorwärtsrichtung gilt beim vorgegebenen BEC–Modell:

$$L(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= {\rm E}\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{\lambda}{\lambda}\hspace{0.15cm}\underline{= 0}\hspace{0.05cm}.$$


(4)  Analog zur Musterlösung der Teilaufgabe (3) erhält man für $y = ±1$:

$$L(y = +1\hspace{0.05cm}|\hspace{0.05cm}x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= +1\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= +1\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{1-\lambda}{0}\hspace{0.15cm}\underline{ \hspace{0.05cm}\Rightarrow \hspace{0.15cm}+\infty }\hspace{0.05cm},$$
$$L(y = -1\hspace{0.05cm}|\hspace{0.05cm}x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y= -1\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y= -1\hspace{0.05cm}|\hspace{0.05cm}x = -1)} = {\rm ln} \hspace{0.15cm} \frac{0}{1-\lambda}\hspace{0.15cm}\underline{ \hspace{0.05cm}\Rightarrow \hspace{0.15cm}-\infty }\hspace{0.05cm}. $$

Richtig sind demnach die Lösungsvorschläge 1 und 2.


(5)  Richtig ist der letzte Lösungsvorschlag:

  • Für $\lambda = 0$ (idealer Kanal) ergibt sich $L(y = {\rm E} \hspace{0.05cm} |\hspace{0.05cm} x) = \ln {(0/0)}$   ⇒   unbestimmtes Ergebnis.
  • Für $\lambda = 1$ (vollständige Auslöschung, $y ≡ {\rm E}$) sind $L(y = +1 \hspace{0.05cm} |\hspace{0.05cm} x)$ und $L(y = \, -1 \hspace{0.05cm} |\hspace{0.05cm} x)$ unbestimmt.