Eine zeitdiskrete Zufallsgröße $\left\langle \hspace{0.05cm}{y_\nu } \hspace{0.05cm}\right\rangle$ mit der skizzierten Autokorrelationsfunktion $\rm AKF$ soll mit Hilfe eines digitalen Filters erzeugt werden.
Die zeitdiskreten Gaußschen Eingangswerte $x_\nu$ seien jeweils gekennzeichnet durch
- den Mittelwert $m_x = 0$,
- die Streuung $\sigma_x = 1$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Erzeugung vorgegebener AKF-Eigenschaften.
- Bezug genommen wird auch auf das Kapitel Autokorrelationsfunktion.
- Alle AKF-Werte $\varphi_y(k \cdot T_{\rm A})$ mit Index $|k| \gt 2$ seien Null.
Fragebogen
Musterlösung
(1) Richtig sind die Lösungsvorschläge 3 und 5:
- Ein rekursives Filter würde stets eine unendlich weit ausgedehnte Impulsantwort $h(t)$ und damit auch eine unendlich ausgedehnte AKF bewirken.
- Deshalb ist hier eine nichtrekursive Filterstruktur zu wählen. Die angegebene AKF erfordert die Ordnung $M= 2$.
- Da die Eingangswerte gaußverteilt und mittelwertfrei sind, gilt dies auch für die Ausgangswerte.
- Bei der Filterung stochastischer Signale gilt stets: Gauß bleibt Gauß und Nicht-Gauß wird nie (exakt) Gauß.
(2) Das Gleichungssystem lautet:
- $$k = 2\text{:}\quad a_0 \cdot a_2 = 1.$$
- $$k = 1\text{:}\quad a_0 \cdot a_1 + a_1 \cdot a_2 = - 1\quad \Rightarrow \quad \sqrt {u \cdot w} = - 1\quad \Rightarrow \quad u \cdot w = 1.$$
- $$k = 0\text{:}\quad a_0 ^2 + a_1 ^2 + a_2 ^2 = 2.25\quad \;\;\, \Rightarrow \quad u + w = 2.25 + 2a_0 \cdot a_2 = 4.25.$$
Das Gleichungssystem bezüglich $u$ und $w$ hat zwei Lösungen:
- $u = 4, \ w = 0.25$: Wegen der Bedingung $a_2 = 1/a_0$ (siehe erste Gleichung) haben $a_0$ und $a_2$ gleiches Vorzeichen.
- Außerdem ist mindestens einer der beiden Koeffizienten größer/gleich $1$.
- Somit ist die Bedingung $a_0+a_2= \sqrt{w} = 0.5$ nicht zu erfüllen.
- Die richtige Lösung lautet deshalb $\underline{u = 0.25}, \ \underline{w = 4}$.
(3) Das Ergebnis von (2) bedeutet, dass $a_1 = \pm \sqrt{0.25} = \pm 0.5$ ist.
- Der positive Wert führt zum Gleichungssystem
- $$(1) \hspace{0.5cm}0.5 \cdot \left( {a_0 + a_2 } \right) = - 1\quad \Rightarrow \quad a_0 + a_2 = - 2,$$
- $$(2) \hspace{0.5cm}a_0 \cdot a_2 = 1.$$
- Daraus folgt $a_0=a_2=-1$. Mit $a_1= 0.5$ erhält man als Endergebnis:
- $$a_1/a_0 \hspace{0.15 cm}\underline{= -0.5}, \hspace{0.5 cm} a_2/a_0 \hspace{0.15 cm}\underline{= 1}.$$
- Die Lösung $a_1= -0.5$ führt zu $a_0=a_2=+1$ und damit zu den gleichen Quotienten.
(4) Allgemein hat dieses Problem $I = 4$ äquivalente Lösungen $($Spiegelung/Verschiebung sowie jeweils die Multiplikation mit $-1)$.
- Da hier die Impulsantwort symmetrisch ist, gibt es allerdings nur $\underline{I = 2}$ unterschiedliche Lösungen:
- $$\text{Lösung 1:} \ \ a_0 = +1,\quad a_1 = - 0.5,\quad a_2 = +1; $$
- $$\text{Lösung 2:} \ \ a_0 = - 1,\quad a_1 = +0.5,\quad a_2 = - 1. $$