Aufgabe 1.2: Signalklassifizierung
Aus LNTwww
Nebenstehend sind drei Signalverläufe dargestellt:
- Das blaue Signal \(x_1(t)\) wird zum Zeitpunkt $t = 0$ eingeschaltet und besitzt für $t > 0$ den Wert $1\,\text{V}$.
- Das rote Signal \(x_2(t)\) ist für $t < 0$ identisch Null, springt bei $t = 0$ auf $1\,\text{V}$ und fällt danach mit der Zeitkonstanten $1\,\text{ms}$ ab. Für $t > 0$ gilt:
- \[x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.\]
- Entsprechend gilt für das grün dargestellte Signal für alle Zeiten $t$:
- \[x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|\hspace{0.05cm}t\hspace{0.05cm}|}/(1\,\text{ms})}.\]
Diese drei Signale sollen nun von Ihnen nach den folgenden Kriterien klassifiziert werden:
- deterministisch bzw. stochastisch,
- kausal bzw. akausal,
- energiebegrenzt bzw. leistungsbegrenzt,
- wertkontinuierlich bzw. wertdiskret,
- zeitkontinuierlich bzw. zeitdiskret.
Hinweis:
- Die Aufgabe gehört zum Kapitel Klassifizierung von Signalen.
Fragebogen
Musterlösung
(1) Zutreffend sind die Lösungsvorschläge 1 und 3:
- Alle Signale können in analytischer Form vollständig beschrieben werden; sie sind deshalb auch deterministisch.
- Alle Signale sind außerdem für alle Zeiten $t$ eindeutig definiert, nicht nur zu gewissen Zeitpunkten. Deshalb handelt es sich stets um zeitkontinuierliche Signale.
- Die Signalamplituden von \(x_2(t)\) und \(x_3(t)\) können alle beliebigen Werte zwischen $0$ und $1\,\text{V}$ annehmen; sie sind deshalb wertkontinuierlich.
- Dagegen sind beim Signal \(x_1(t)\) nur die zwei Signalwerte $0$ und $1\,\text{V}$ möglich; es liegt ein wertdiskretes Signal vor.
(2) Richtig sind die Lösungsvorschläge 1 und 2:
- Ein Signal bezeichnet man als kausal, wenn es für Zeiten $t < 0$ nicht existiert bzw. identisch Null ist. Dies gilt für die Signale \(x_1(t)\) und \(x_2(t)\).
- Dagegen gehört \(x_3(t)\) zur Klasse der akausalen Signale.
(3) Nach der allgemeinen Definition gilt:
- \[E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.\]
Im vorliegenden Fall ist die untere Integrationsgrenze Null und die obere Integrationsgrenze $+\infty$. Man erhält:
- \[E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}. \]
Bei endlicher Energie ist die zugehörige Leistung stets verschwindend klein. Daraus folgt $P_2\hspace{0.15cm}\underline{ = 0}$.
(4) Richtig sind die Lösungsvorschläge 2 und 3:
- Wie bereits in der letzten Teilaufgabe berechnet wurde, besitzt \(x_2(t)\) eine endliche Energie:
- $$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2s}. $$
- Die Energie des Signals \(x_3(t)\) ist doppelt so groß, da nun der Zeitbereich $t < 0$ den gleichen Beitrag liefert wie der Zeitbereich $t > 0$. Also ist
- $$E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s}.$$
- Beim Signal \(x_1(t)\) divergiert das Energieintegral: $E_1 \rightarrow \infty$. Dieses Signal weist eine endliche Leistung auf ⇒ $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$.
- Das Ergebnis berücksichtigt auch, dass das Signal \(x_1(t)\) in der Hälfte der Zeit $(t < 0)$ identisch Null ist.
- Das Signal \(x_1(t)\) ist dementsprechend leistungsbegrenzt.