Aufgabe 2.2: Eigenschaften von Galoisfeldern

Aus LNTwww
Wechseln zu:Navigation, Suche

Addition / Multiplikation für  $q = 5$  und  $q = 6$

Wir betrachten hier die Zahlenmengen

  • $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\} \ \Rightarrow \ q = 5$,
  • $Z_6 = \{0, \, 1, \, 2, \, 3, \, 4,\, 5\} \ \Rightarrow \ q = 6$.


In nebenstehender Grafik sind die  (teilweise unvollständigen)  Additions– und Multiplikationstabellen für  $q = 5$  und  $q = 6$  angegeben,  wobei sowohl die Addition  („$+$”)  als auch die Multiplikation  („$\hspace{0.05cm}\cdot\hspace{0.05cm}$”)  modulo  $q$  zu verstehen sind.

Zu überprüfen ist,  ob die Zahlenmengen  $Z_5$  und  $Z_6$  alle Bedingungen eines Galoisfeldes  $\rm GF(5)$  bzw.  $\rm GF(6)$  erfüllen.

Im  "Theorieteil"  werden acht Bedingungen genannt,  die alle erfüllt sein müssen.  Sie sollen nur zwei dieser Bedingungen überprüfen:

$\rm(D)$  Für alle Elemente gibt es eine  additive Inverse  (Inverse  for  „$+$”):

$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i + {\rm Inv_A}(z_i) = 0 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_A}(z_i) = -z_i \hspace{0.05cm}.$$

$\rm(E)$  Alle Elemente haben eine  multiplikative Inverse  (Inverse  for  „$\hspace{0.05cm}\cdot\hspace{0.05cm}$”):

$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne 0, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i \cdot {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = z_i^{-1}\hspace{0.05cm}.$$

Die weiteren Bedingungen für ein Galoisfeld,  nämlich

  • Closure,
  • Existenz von Null– und Einselelement,
  • Gültigkeit von Kommutativ–,  Assoziativ–  und Distributivgesetz


werden sowohl von  $Z_5$  als auch von  $Z_6$  erfüllt.



Hinweis:  Die Aufgabe bezieht sich auf das Kapitel  "Einige Grundlagen der Algebra".



Fragebogen

1

Ergänzen Sie die Additionstabelle für  $q = 5$.  Geben Sie folgende Werte ein:

$A_{04} \ = \ $

$A_{14} \ = \ $

$A_{44} \ = \ $

2

Ergänzen Sie die Multiplikationstabelle für  $q = 5$.  Geben Sie folgende Werte ein:

$M_{04} \ = \ $

$M_{14} \ = \ $

$M_{44} \ = \ $

3

Erfüllt die Menge  $Z_5$  die Bedingungen eines Galoisfeldes?

Ja.
Nein,  es gibt nicht für alle Elemente  $(0, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 4)$  eine additive Inverse.
Nein,  die Elemente  $1, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 4$   haben nicht alle eine multiplikative Inverse.

4

Erfüllt die Menge  $Z_6$  die Bedingungen eines Galoisfeldes?

Ja.
Nein,  es gibt nicht für alle Elemente  $(0, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 5)$  eine additive Inverse.
Nein,  die Elemente  $1, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 5$   haben nicht alle eine multiplikative Inverse.

5

Die Zahlenmengen  $Z_2, \ Z_3, \ Z_5$  und $Z_7$  ergeben ein Galoisfeld,  die Mengen  $Z_4, \ Z_6, \ Z_8, \ Z_9$  dagegen nicht.  Was folgern Sie daraus?

$Z_{10} = \{0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9\}$  ist ein Galoisfeld?
$Z_{11} = \{0, \, 1, \, 2, \, 3, \, 4, \,5, \, 6, \, 7, \, 8, \, 9, \, 10\}$  ist ein Galoisfeld?
$Z_{12} = \{0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9, \, 10, \, 11\}$  ist ein Galoisfeld?


Musterlösung

(1)  Allgemein gilt für  $0 ≤ \mu ≤ 4 \text{:} \hspace{0.2cm} A_{\mu 4} = (\mu + 4) \, {\rm mod} \, 5$.  Daraus folgt:

$$A_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}A_{14}=(1+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}A_{24}=(2+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},$$
$$A_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3+4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5= 2\hspace{0.05cm},\hspace{0.2cm}A_{44}=(4+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$

Aufgrund des Kommutativgesetzes der Addition,

$$z_i + z_j = z_j + z_i \hspace{0.5cm} {\rm f\ddot{u}r \hspace{0.2cm}alle\hspace{0.2cm} } z_i, z_j \in Z_5\hspace{0.05cm},$$

ist natürlich die letzte Spalte der Additionstabelle identisch mit der letzten Zeile der gleichen Tabelle.


(2)  Nun gilt  $M_{\mu 4} = (\mu \cdot 4) \, {\rm mod} \, 5$  und man erhält:

$$M_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}M_{14}=(1\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}M_{24}=(2\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},$$
$$M_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3\cdot4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm}M_{44}=(4\cdot 4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$

Da die Multiplikation ebenfalls kommutativ ist,  stimmt auch in der Multiplikationstabelle die letzte Spalte wieder mit der letzten Zeile überein.


Tabellen für  $q = 5$

(3)  Die Grafik zeigt die vollständigen Additions– und Multiplikationstabellen für  $q = 5$.  Man erkennt:

  • In der Additionstabelle gibt es in jeder Zeile  (und auch in jeder Spalte)  genau eine Null.
  • Zu jedem $z_i ∈ Z_5$ gibt es also ein  ${\rm Inv}_{\rm A} (z_i)$,  das die Bedingung  $[z_i + {\rm Inv}_{\rm A}(z_i)] \, {\rm mod} \, 5 = 0$  erfüllt:
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = 0 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-3) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$
  • In der Multiplikationstabelle lassen wir das Nullelement  (erste Zeile und erste Spalte)  außer Betracht.
  • In allen anderen Zeilen und Spalten der unteren Tabelle gibt es tatsächlich jeweils genau eine Eins.
  • Aus der Bedingung  $[z_i \cdot {\rm Inv}_{\rm M}(z_i)] \, {\rm mod} \, 5 = 1$  erhält man:
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 1\hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$
  • Da sowohl die erforderlichen additiven als auch die multiplikativen Inversen existieren beschreibt  $Z_5$  ein Galoisfeld  $\rm GF(5)$   ⇒  Richtig ist der  Lösungsvorschlag 1.


(4)  Aus der blauen Additionstabelle auf der Angabenseite erkennt man,  dass alle Zahlen  $0, \, 1, \, 2, \, 3, \, 4, \, 5$  der Menge  $Z_6$  eine additive Inverse besitzen  ⇒  in jeder Zeile (und Spalte) gibt es genau eine Null.

  • Eine multiplikative Inverse  ${\rm Inv}_{\rm M}(z_i)$  gibt es dagegen nur für  $z_i = 1$  und  $z_i = 5$,  nämlich
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 1\hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 25 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 6 = 1 \hspace{0.05cm}.$$
  • Für $z_i = 2, \ z_i = 3$ und $z_i = 4$ findet man dagegen kein Element $z_j$, so dass $(z_i \cdot z_j) \, {\rm mod} \, 6 = 1$ ergibt.
  • Richtig ist also der  Lösungsvorschlag 3   ⇒   die blauen Tabellen für  $q = 6$  ergeben  kein Galoisfeld  $\rm GF(6)$.


(5)  Richtig ist der  Lösungsvorschlag 2:

  • Eine endliche Zahlenmenge  $Z_q = \{0, \, 1, \hspace{0.05cm} \text{...} \hspace{0.1cm} , \, q-1\}$  natürlicher Zahlen führt nur dann zu einem „endlichen Zahlenkörper”  (dies ist die deutsche Bezeichnung für ein Galoisfeld),  wenn  $q$  eine Primzahl ist.
  • Von den oben genannten Zahlenmengen trifft dies nur für  $Z_{11}$  zu.