Aufgaben:Aufgabe 2.2: Gleichsignalanteile: Unterschied zwischen den Versionen
Zeile 58: | Zeile 58: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' Alle Signale mit Ausnahme von $x_2(t)$ beinhalten einen Gleichsignalanteil ⇒ Richtig sind somit die Antworten 1, 3, 4, 5 und 6. | + | '''1.''' Alle Signale mit Ausnahme von $x_2(t)$ beinhalten einen Gleichsignalanteil ⇒ Richtig sind somit die <u>Antworten 1, 3, 4, 5 und 6</u>. |
− | '''2.''' Subtrahiert man vom Signal $x_5(t)$ den Gleichanteil 1V, so ist das Restsignal $\Delta x_5(t) = x5(t) – 1\text{V}$ gleich Null. Dementspechend ist auch die Spektralfunktion $\Delta X_5(f) = 0$ | + | '''2.''' Subtrahiert man vom Signal $x_5(t)$ den Gleichanteil 1V, so ist das Restsignal $\Delta x_5(t) = x5(t) – 1\text{V}$ gleich Null. Dementspechend ist auch die Spektralfunktion $\Delta X_5(f) = 0$. |
− | '''3.''' Bei einem periodischen Signal genügt zur Berechnung des Gleichsignalanteils die Mittelung über eine | + | Bei allen anderen Zeitverläufen ist $\Delta x_i(t)$ ungleich 0 und damit auch die dazugehörige Spektralfunktion $\Delta X_i(f)$ ⇒ Richtig ist <u>allein der Lösungsvorschlag 5</u>. |
+ | |||
+ | '''3.''' Bei einem periodischen Signal genügt zur Berechnung des Gleichsignalanteils $A_0$ die Mittelung über eine Periodendauer. Beim Beispielsignal $x_3(t)$ ist diese $T_0 = 3\,\text{ms}$. Damit ergibt sich der gesuchte Gleichanteil zu | ||
$$A_0=\rm \frac{1}{3\,ms}(1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms) | $$A_0=\rm \frac{1}{3\,ms}(1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms) |
Version vom 13. Januar 2017, 16:34 Uhr
Die Grafik zeigt einige Zeitsignale, die für alle Zeiten (von $-\infty$ bis $+\infty$) definiert sind. Bei allen sechs Beispielsignalen $x_i(t)$ kann für die zugehörige Spektralfunktion geschrieben werden:
$$X_i(f)=A_0\cdot{\rm \delta}(f)+\Delta X_i(f).$$
Hierbei bezeichnen
- $A_0$ den Gleichsignalanteil, und
- $\Delta X_i(f)$ das Spektrum des um den Gleichanteil verminderten Restsignals $\Delta x_i(t) = x_i(t) - A_0$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gleichsignal - Grenzfall eines periodischen Signals.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
2. Subtrahiert man vom Signal $x_5(t)$ den Gleichanteil 1V, so ist das Restsignal $\Delta x_5(t) = x5(t) – 1\text{V}$ gleich Null. Dementspechend ist auch die Spektralfunktion $\Delta X_5(f) = 0$.
Bei allen anderen Zeitverläufen ist $\Delta x_i(t)$ ungleich 0 und damit auch die dazugehörige Spektralfunktion $\Delta X_i(f)$ ⇒ Richtig ist allein der Lösungsvorschlag 5.
3. Bei einem periodischen Signal genügt zur Berechnung des Gleichsignalanteils $A_0$ die Mittelung über eine Periodendauer. Beim Beispielsignal $x_3(t)$ ist diese $T_0 = 3\,\text{ms}$. Damit ergibt sich der gesuchte Gleichanteil zu
$$A_0=\rm \frac{1}{3\,ms}(1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms) \hspace{0.15cm}\underline{=-0.333\,V}.$$
4. Für das Signal x4(t) kann geschrieben werden: x4(t) = 0.5 V + Δx4(t). Hierbei bezeichnet Δx4(t) einen Rechteckimpuls der Amplitude 0.5 V und der Dauer 4 ms, der aufgrund seiner endlichen Dauer nicht zum Gleichsignalanteil beiträgt. Deshalb gilt hier A0 = 0.5 V.
5. Die allgemeine Gleichung zur Berechnung des Gleichsignalanteils lautet:
$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.$$
Spaltet man dieses Integral in zwei Teilintegrale auf, so erhält man:
$$A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{T_{\rm M}/2}1 \rm V\cdot\, {\rm d }{\it t }.$$
Nur der zweite Term liefert einen Beitrag. Daraus folgt wiederum $$A_0 = 0.5 V$$.