Aufgaben:Aufgabe 4.6: Ortskurve bei ESB-AM: Unterschied zwischen den Versionen
Zeile 84: | Zeile 84: | ||
= \sqrt{2 \cdot ( 1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t))}.\end{align*}$$ | = \sqrt{2 \cdot ( 1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t))}.\end{align*}$$ | ||
− | *Der Maximalwert ergibt sich aus sin( $\omega_{10} \cdot t$ ) | + | *Der Maximalwert ergibt sich aus sin( $\omega_{10} \cdot t \leq 1$ ) zu $a_{\text{max}} \; \underline{= 2}$. |
− | *Für den Minimalwert erhält man unter Berücksichtigung von $\sin(\omega_{10} \cdot t \geq -1$ | + | *Für den Minimalwert erhält man unter Berücksichtigung von $\sin(\omega_{10} \cdot t) \geq -1$ ⇒ $a_{\text{min}} \; \underline{= 0}$. |
*Bei $t = 0$ ist der Betrag gleich $a_0 = \sqrt{2 }\; \underline{\approx 1.414}$. | *Bei $t = 0$ ist der Betrag gleich $a_0 = \sqrt{2 }\; \underline{\approx 1.414}$. | ||
Version vom 22. Januar 2017, 15:03 Uhr
Wir betrachten das analytische Signal $s_+(t)$ mit der Spektralfunktion
$$S_{\rm +}(f) = 1 \cdot \delta (f - f_{\rm 50})- {\rm j} \cdot \delta (f - f_{\rm 60}) .$$
Hierbei stehen $f_{50}$ und $f_{60}$ als Abkürzungen für die Frequenzen 50 kHz bzw. 60 kHz.
In dieser Aufgabe soll der Verlauf des äquivalenten Tiefpass-Signals $s_{TP}(t)$ analysiert werden, das in diesem Tutorial auch als Ortskurve bezeichnet wird.
- In den Teilaufgaben (1) bis (3) gehen wir davon aus, dass das Signal $s(t)$ durch eine Einseitenband-Amplitudenmodulation des sinusförmigen Nachrichtensignals der Frequenz $f_{\rm N} = 10 \ \text{ kHz}$ mit cosinusförmigem Träger bei $f_{\rm T} = f_{50}$ entstanden ist, wobei nur das obere Seitenband (OSB) übertragen wird.
- Dagegen wird bei der Teilaufgabe (4) von der Trägerfrequenz $f_{\rm T} = f_{60}$ ausgegangen. Diese Annahme setzt voraus, dass eine USB-Modulation stattgefunden hat.
Hinweise:
- Die Aufgabe gehört zum Kapitel Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Sie können Ihre Lösung mit dem folgenden Interaktionsmodul überprüfen:
Ortskurve – Darstellung des äquivalenten Tiefpass-Signals
Fragebogen
Musterlösung
1. Das Spektrum des äquivalenten TP–Signals lautet mit der Trägerfrequenz $f_{\rm T} = f_{50} = 50 \ \text{ kHz}$:
$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 50}) = 1 \cdot \delta (f)- {\rm j} \cdot \delta (f - f_{\rm 10}) .$$
Damit ergibt sich für das dazugehörige Zeitsignal:
$$s_{\rm TP}(t) = {\rm 1 } - {\rm j} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
Ausgehend vom Punkt $(1, –{\rm j})$ verläuft $s_{\rm TP}(t)$ auf einem Kreis mit Mittelpunkt $(1, 0)$ und Radius $1$. Die Periodendauer ist gleich dem Kehrwert der Frequenz: $T_0 = 1/f_{10} = 100 \ \mu \text{s}$ ⇒ Antwort 2.
2. Spaltet man obige Gleichung nach Real- und Imaginäranteil auf, so erhält man:
$$s_{\rm TP}(t) = {\rm 1 } + \sin({ \omega_{\rm 10} \hspace{0.05cm} t }) -{\rm j}\cdot \cos({ \omega_{\rm 10} \hspace{0.05cm} t }).$$
Dies führt zur Betragsfunktion
$$\begin{align*}a(t)& = |s_{\rm TP}(t)|=\sqrt{{\rm Re}\left[s_{\rm TP}(t)\right]^2 + {\rm Im}\left[s_{\rm TP}(t)\right]^2 }= \\ & = \sqrt{1 + 2 \sin(\omega_{\rm 10}\hspace{0.05cm} t)+ \sin^2(\omega_{\rm 10}\hspace{0.05cm} t)+ \cos^2(\omega_{\rm 10}\hspace{0.05cm} t)} = \sqrt{2 \cdot ( 1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t))}.\end{align*}$$
- Der Maximalwert ergibt sich aus sin( $\omega_{10} \cdot t \leq 1$ ) zu $a_{\text{max}} \; \underline{= 2}$.
- Für den Minimalwert erhält man unter Berücksichtigung von $\sin(\omega_{10} \cdot t) \geq -1$ ⇒ $a_{\text{min}} \; \underline{= 0}$.
- Bei $t = 0$ ist der Betrag gleich $a_0 = \sqrt{2 }\; \underline{\approx 1.414}$.
3. Entsprechend der allgemeinen Definition gilt:
$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}= {\rm arctan} \hspace{0.1cm}\frac{-\cos(\omega_{\rm 10}\hspace{0.05cm} t)}{1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t)}.$$
Für $t = 0$ ist $\cos( \omega_{10} \cdot t ) = 1$ und $\sin( \omega_{10} \cdot t ) = 0$. Daraus folgt:
$$\phi(t = 0)= {\rm arctan} (-1) \hspace{0.15 cm}\underline{= -45^\circ}.$$
Dagegen gilt für $t = T_0/4$ = =25 \ \mu \text{s}$ : '"`UNIQ-MathJax36-QINU`"' Die beiden bisher berechneten Winkel kann man auch aus obiger Grafik ablesen. Der Phasenwert bei $t =75 \ \mu \text{s}$ muss dagegen durch Grenzübergang bestimmt werden, da hier sowohl der Real- als auch der Imaginärteil $0$ werden und somit das Argument der arctan–Funktion unbestimmt ist. Man erhält $\phi(t=75 \ \mu \text{s}) \; \underline{= 0}.$ Dieses Ergebnis soll hier numerisch hergeleitet werden. Berechnet man die Phasenfunktion für $t$ = 74 μs, so erhält man mit $\omega_{10} \cdot t$ = 1.48 $\pi$ = 266.4°: '"`UNIQ-MathJax37-QINU`"' Entsprechend gilt für $t$ = 76 μs mit $\omega_{10} \cdot t$ = 1.52 $\pi$ = 273.6 °: '"`UNIQ-MathJax38-QINU`"' Diese Zahlenwerte lassen darauf schließen, dass die Grenzwerte für $t$ → 75 μs sich zu ±90° ergeben, je nachdem, ob man sich diesem Wert von oben oder unten nähert. Der Phasenwert bei exakt $t$ = 75 μs ist gleich dem Mittelwert zwischen rechts- und linksseitigem Grenzwert, also 0. [[Datei:P_ID767__Sig_A_4_6_d.png|250px|right|Ortskurve für USB (ML zu Aufgabe A4.6)]] '''4.''' Nun lauten die Gleichungen für Zeit– und Frequenzbereich: '"`UNIQ-MathJax39-QINU`"' '"`UNIQ-MathJax40-QINU`"' In der Grafik ist sTP(t) dargestellt. Man erkennt: Die Ortskurve ist wiederum ein Kreis mit Radius 1, aber nun mit Mittelpunkt (0, –j). Es gilt auch hier $s_{TP}(t$ = 0) = 1 – j. Man bewegt sich nun auf der Ortskurve im Uhrzeigersinn. Die Periodendauer beträgt weiterhin $T_0$ = $1/f_{10}$ = 100 μs. Die Ortskurve ist gegenüber Punkt a) nur um 90° in der komplexen Ebene gedreht. Für alle Zeiten ergeben sich die gleichen Zeigerlängen wie für $f_T = f_{50}$. Der Betrag bleibt gleich. Die Phasenfunktion $\Phi(t)$ liefert nun Werte zwischen $–\pi$ und 0, während die in der Teilfrage 3) berechnete Phasenfunktion Werte zwischen $–pi/2$ und $+\pi /24$ angenommen hat. Es gilt:
$$\phi_d(t )= -(\phi_c(t) + 90^\circ).$$
Richtig sind somit der erste und der dritte Lösungsvorschlag.