Aufgaben:Aufgabe 1.3Z: Exponentiell abfallende Impulsantwort: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 1.3Z Exponentiell abfallendes h(t) nach 1.3Z Exponentiell abfallende Impulsantwort) |
|||
Zeile 52: | Zeile 52: | ||
$$H(f) = \left[ \frac{-1/T}{{\rm j}2\pi f+{1}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{-(\rm j}2\pi f+ {1}/{T}) | $$H(f) = \left[ \frac{-1/T}{{\rm j}2\pi f+{1}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{-(\rm j}2\pi f+ {1}/{T}) | ||
t}\right]_{0}^{\infty}= \frac{1}{1+{\rm j} \cdot 2\pi fT}.$$ | t}\right]_{0}^{\infty}= \frac{1}{1+{\rm j} \cdot 2\pi fT}.$$ | ||
− | Bei der Frequenz $f =$ | + | Bei der Frequenz $f = 0$ hat der Frequenzgang $\rm \underline{\: den \: Wert \: 1}$. |
'''2.''' Dieser Frequenzgang kann mit Real– und Imaginärteil auch wie folgt geschrieben werden: | '''2.''' Dieser Frequenzgang kann mit Real– und Imaginärteil auch wie folgt geschrieben werden: | ||
$$H(f) = \frac{1}{1+(2\pi fT)^2} -{\rm j} \cdot \frac{2\pi fT}{1+(2\pi fT)^2}.$$ | $$H(f) = \frac{1}{1+(2\pi fT)^2} -{\rm j} \cdot \frac{2\pi fT}{1+(2\pi fT)^2}.$$ | ||
− | Die Impulsantwort an der Stelle $t =$ | + | Die Impulsantwort an der Stelle $t = 0$ ist gleich dem Integral über $H(f)$. Da der Imaginärteil ungerade ist, muss nur über den Realteil integriert werden. Unter Ausnutzung der Symmetrieeigenschaft erhält man: |
$$h(t=0)=2 \cdot \int_{ 0 }^{ \infty } \frac{1}{1+(2\pi fT)^2} \hspace{0.1cm}{\rm | $$h(t=0)=2 \cdot \int_{ 0 }^{ \infty } \frac{1}{1+(2\pi fT)^2} \hspace{0.1cm}{\rm | ||
d}f = \frac{1}{\pi T} \cdot \int_{ 0 }^{ \infty } \frac{1}{1+x^2} \hspace{0.1cm}{\rm d}x .$$ | d}f = \frac{1}{\pi T} \cdot \int_{ 0 }^{ \infty } \frac{1}{1+x^2} \hspace{0.1cm}{\rm d}x .$$ | ||
Unter Benutzung des angegebenen bestimmten Integrals mit dem Resultat $π/2$ ergibt sich: | Unter Benutzung des angegebenen bestimmten Integrals mit dem Resultat $π/2$ ergibt sich: | ||
$$h(t=0)= \frac{1}{2 T} \hspace{0.15cm}\underline{= {\rm 500\cdot 1/s}}.$$ | $$h(t=0)= \frac{1}{2 T} \hspace{0.15cm}\underline{= {\rm 500\cdot 1/s}}.$$ | ||
− | Dieses Ergebnis zeigt auch, dass die Impulsantwort bei $t =$ | + | Dieses Ergebnis zeigt auch, dass die Impulsantwort bei $t = 0$ gleich dem Mittelwert aus dem links- und rechtsseitigen Grenzwert ist. |
Zeile 71: | Zeile 71: | ||
− | '''4.''' Wegen $h(t) =$ | + | '''4.''' Wegen $h(t) = 0$ für $t < 0$ ist das System tatsächlich kausal. Es handelt sich um einen Tiefpass erster Ordnung. Dagegen müsste ein Hochpass folgende Bedingung erfüllen: |
$$H(f = 0) = \int_{-\infty}^{+\infty}h(t) \hspace{0.15cm}{\rm d}t = 0.$$ | $$H(f = 0) = \int_{-\infty}^{+\infty}h(t) \hspace{0.15cm}{\rm d}t = 0.$$ | ||
$H(f)$ ist eine komplexe Funktion. Der Phasengang lautet (siehe Aufgabe Z1.1): | $H(f)$ ist eine komplexe Funktion. Der Phasengang lautet (siehe Aufgabe Z1.1): | ||
$$b(f) = \arctan {f}/{f_{\rm G}}.$$ | $$b(f) = \arctan {f}/{f_{\rm G}}.$$ | ||
− | Für die Frequenz $f = f_{\rm G}$ erhält man $b(f = f_{\rm G}) = π/4 = | + | Für die Frequenz $f = f_{\rm G}$ erhält man $b(f = f_{\rm G}) = π/4 = 45^\circ$. |
− | Liegt am Eingang ein Cosinussignal der Frequenz $f_{\rm G}$ an, so ergibt sich für das Ausgangssignal: | + | Liegt am Eingang ein Cosinussignal der Frequenz $f = f_{\rm G}$ an, so ergibt sich für das Ausgangssignal: |
$$y(t) = K \cdot \cos( 2 \pi f_{\rm G} t - 45^{\circ}).$$ | $$y(t) = K \cdot \cos( 2 \pi f_{\rm G} t - 45^{\circ}).$$ | ||
− | Dieses Signal ist zwar eine harmonische Schwingung, aber kein Cosinussignal. Richtig ist somit | + | Dieses Signal ist zwar eine harmonische Schwingung, aber kein Cosinussignal. Richtig ist somit <u> der erste Lösungsvorschlag}</u>. |
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 26. Januar 2017, 12:14 Uhr
Gemessen wurde die Impulsantwort $h(t)$ eines LZI–Systems, die für alle Zeiten $t < 0$ identisch $0$ ist und für $t > 0$ entsprechend einer Exponentialfunktion abfällt: $$h(t) = {1}/{T} \cdot {\rm e}^{-t/T}.$$ Der Funktionsparameter sei $T = 1 \ \rm ms$. In der Teilaufgabe (3) ist nach der 3dB–Grenzfrequenz $f_{\rm G}$ gefragt, die wie folgt implizit definiert ist: $$|H(f = f_{\rm G})| = {1}/{\sqrt{2}} \cdot|H(f = 0)| .$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Systembeschreibung im Zeitbereich
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Gegeben ist das folgende bestimmte Integral:
$$\int_{ 0 }^{ \infty } \frac{1}{1+x^2} \hspace{0.1cm}{\rm d}x = {\pi}/{2} .$$
Fragebogen
Musterlösung
2. Dieser Frequenzgang kann mit Real– und Imaginärteil auch wie folgt geschrieben werden:
$$H(f) = \frac{1}{1+(2\pi fT)^2} -{\rm j} \cdot \frac{2\pi fT}{1+(2\pi fT)^2}.$$
Die Impulsantwort an der Stelle $t = 0$ ist gleich dem Integral über $H(f)$. Da der Imaginärteil ungerade ist, muss nur über den Realteil integriert werden. Unter Ausnutzung der Symmetrieeigenschaft erhält man:
$$h(t=0)=2 \cdot \int_{ 0 }^{ \infty } \frac{1}{1+(2\pi fT)^2} \hspace{0.1cm}{\rm
d}f = \frac{1}{\pi T} \cdot \int_{ 0 }^{ \infty } \frac{1}{1+x^2} \hspace{0.1cm}{\rm d}x .$$
Unter Benutzung des angegebenen bestimmten Integrals mit dem Resultat $π/2$ ergibt sich:
$$h(t=0)= \frac{1}{2 T} \hspace{0.15cm}\underline{= {\rm 500\cdot 1/s}}.$$
Dieses Ergebnis zeigt auch, dass die Impulsantwort bei $t = 0$ gleich dem Mittelwert aus dem links- und rechtsseitigen Grenzwert ist.
3. Der Amplitudengang lautet bei dieser Aufgabe bzw. allgemein mit der 3dB-Grenzfrequenz:
$$|H(f)| = \frac{1}{\sqrt{1+(2\pi fT)^2}} = \frac{1}{\sqrt{1+(f/f_{\rm G})^2}}.$$
Durch Koeffizientenvergleich erhält man:
$$f_{\rm G} = \frac{1}{2\pi T} \hspace{0.15cm}\underline{= {\rm 159 \hspace{0.1cm} Hz}}.$$
4. Wegen $h(t) = 0$ für $t < 0$ ist das System tatsächlich kausal. Es handelt sich um einen Tiefpass erster Ordnung. Dagegen müsste ein Hochpass folgende Bedingung erfüllen:
$$H(f = 0) = \int_{-\infty}^{+\infty}h(t) \hspace{0.15cm}{\rm d}t = 0.$$
$H(f)$ ist eine komplexe Funktion. Der Phasengang lautet (siehe Aufgabe Z1.1):
$$b(f) = \arctan {f}/{f_{\rm G}}.$$
Für die Frequenz $f = f_{\rm G}$ erhält man $b(f = f_{\rm G}) = π/4 = 45^\circ$.
Liegt am Eingang ein Cosinussignal der Frequenz $f = f_{\rm G}$ an, so ergibt sich für das Ausgangssignal: $$y(t) = K \cdot \cos( 2 \pi f_{\rm G} t - 45^{\circ}).$$ Dieses Signal ist zwar eine harmonische Schwingung, aber kein Cosinussignal. Richtig ist somit der erste Lösungsvorschlag}.