Aufgaben:Aufgabe 1.3: Gemessene Sprungantwort: Unterschied zwischen den Versionen
Zeile 61: | Zeile 61: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Das Ausgangssignal $y_1(t)$ ist $0$, solange das Eingangssignal $x_1(t) = 0$ | + | '''(1)''' Das Ausgangssignal $y_1(t)$ ist $0$, solange das Eingangssignal $x_1(t) = 0$. Das bedeutet, dass hier ein kausales System vorliegt. Zum gleichen Ergebnis hätte man allein durch die Aussage „das Ausgangssignal wurde gemessen” kommen können. Nur kausale Systeme sind realisierbar und nur bei realisierbaren Systemen kann etwas gemessen werden. |
Das Eingangssignal $x_1(t)$ kann für sehr große Zeiten $(t >> 0)$ als Gleichsignal interpretiert werden. Wäre $H(f)$ ein Hochpass, dann müsste $y_1(t)$ für $t → ∞$ gegen 0 gehen. Das heißt: $H(f)$ stellt einen Tiefpass dar. Richtig sind die<u>Lösungsvorschläge 2 und 3</u>.. | Das Eingangssignal $x_1(t)$ kann für sehr große Zeiten $(t >> 0)$ als Gleichsignal interpretiert werden. Wäre $H(f)$ ein Hochpass, dann müsste $y_1(t)$ für $t → ∞$ gegen 0 gehen. Das heißt: $H(f)$ stellt einen Tiefpass dar. Richtig sind die<u>Lösungsvorschläge 2 und 3</u>.. |
Version vom 26. Januar 2017, 12:21 Uhr
A1.3 Gemessene Sprungantwort
An den Eingang eines linearen zeitinvarianten (LZI–)Übertragungssystems mit Frequenzgang $H(f)$ und Impulsantwort $h(t)$ wird ein sprungförmiges Signal angelegt (blaue Kurve): $$x_1(t) = 4\ {\rm V} \cdot \gamma(t).$$ Das gemessene Ausgangssignal $y_1(t)$ hat dann den in der unteren Grafik dargestellten Verlauf. Mit $T = 2 \,{\rm ms}$ kann dieses Signal im Bereich von $0$ bis $T$ wie folgt beschrieben werden: $$y_1(t) = 2\,{\rm V} \cdot\left[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\right].$$
Ab $t = T $ ist $y_1(t)$ konstant gleich $1 \,{\rm V}$.
In der letzten Teilaufgabe (5) wird nach dem Ausgangssignal $y_2(t)$ gefragt, wenn am Eingang ein symmetrischer Rechteckimpuls $x_2(t)$ der Dauer $T = 2 \ {\rm ms}$ anliegt (siehe roter Kurvenzug in der oberen Grafik).
Hinweise:
- Die Aufgabe gehört zum Kapitel Systembeschreibung im Zeitbereich
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Für den Rechteckimpuls $x_2(t)$ kann mit $A = 2 \ \text{V}$ auch geschrieben werden:
- $$x_2(t) = A \cdot \big [\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big ].$$
- Der Frequenzgang $H(f)$ des hier betrachteten LZI–Systems kann dem Angabenblatt zu Aufgabe 3.8 im Buch „Signaldarstellung” entnommen werden. Allerdings sind die Abszissen– und Ordinatenparameter entsprechend anzupassen.
- Zur Lösung der vorliegenden Aufgabe 1.3 wird $H(f)$ jedoch nicht explizit benötigt.
Fragebogen
Musterlösung
Das Eingangssignal $x_1(t)$ kann für sehr große Zeiten $(t >> 0)$ als Gleichsignal interpretiert werden. Wäre $H(f)$ ein Hochpass, dann müsste $y_1(t)$ für $t → ∞$ gegen 0 gehen. Das heißt: $H(f)$ stellt einen Tiefpass dar. Richtig sind dieLösungsvorschläge 2 und 3..
(2) Der Gleichsignalübertragungsfaktor kann aus $x_1(t)$ und $y_1(t)$ abgelesen werden, wenn der Einschwingvorgang abgeklungen ist:
$$H(f =0) = \frac{y_1(t \rightarrow \infty)}{x_1(t \rightarrow \infty)}=
\frac{ {\rm 1\, V} }{ {\rm 4\, V} } \hspace{0.15cm}\underline{= 0.25}.$$
(3) Die Sprungantwort $σ(t)$ ist gleich dem Ausgangssignal $y(t)$, wenn am Eingang $x(t) = γ(t)$ anliegen würde. Wegen $x_1(t) = 4 \ \rm {V} · γ(t)$ gilt somit im Bereich von $0$ bis $T = 2 \ \rm ms$: $$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\left( {t}/{T} - 0.5 ({t}/{T})^2\right).$$ Zum Zeitpunkt $t = T = 2 \ \rm ms$ erreicht die Sprungantwort ihren Endwert 0.25. Für $t = T/2 = 1 \ \rm ms$ ergibt sich der Zahlenwert $3/16 \; \underline{\: = \: 0.1875}$. Beachten Sie bitte, dass die Sprungantwort $σ(t)$ ebenso wie die Sprungfunktion $γ(t)$ keine Einheit besitzt.
(4) Die Sprungantwort $σ(t)$ ist das Integral über die Impulsantwort $h(t)$. Damit ergibt sich $h(t)$ aus $σ(t)$ durch Differentiation nach der Zeit. Im Bereich $0 < t < T$ gilt deshalb:
$$h(t) = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}= 0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right) = \frac{0.5}{T} \cdot (1- \frac{t}{T})$$ $$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$ $$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$ Für $t < 0$ und $t ≥ T$ ist $h(t)$ stets $0$. Der Wert $h(t = 0)$ bei exakt $t = 0$ muss aus dem Mittelwert zwischen links- und rechtsseitigem Grenzwert ermittelt werden: $$h(t=0) = {1}/{2} \cdot \left[ \lim_{\varepsilon \hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon \hspace{0.03cm} \to \hspace{0.03cm} 0} h(+ \varepsilon)\right] = \left[ 0 + {0.5}/{T}\right] = {0.25}/{T}= 250 \cdot{1}/{ {\rm s} }.$$
(5) Der Rechteckimpuls $x_2(t)$ kann auch als die Differenz zweier um $±T/2$ verschobener Sprünge dargestellt werden:
$$x_2(t) = A \cdot \left[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\right].$$ Damit ist das Ausgangssignal gleich der Differenz zweier um $±T/2$ verschobener Sprungantworten: $$y_2(t) = A \cdot \left[\sigma(t + {T}/{2}) - \sigma(t - {T}/{2})\right].$$ Für $t = \: –T/2 = –1\ \rm ms$ gilt $y_2(t) \;\underline{ = 0}$. Für die weiteren betrachteten Zeitpunkte erhält man wie in der Grafik angegeben: $$y_2(t = 0) = A \cdot \left[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\right] = {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$ $$y_2(t = T/2) = y_2(t = 1\,{\rm ms}) =A \cdot \left[\sigma( T) - \sigma(0)\right] = {\rm 2\, V}\cdot \left[0.25 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.5\, V}},$$ $$y_2(t = T) = A \cdot \left[\sigma(1.5 \cdot T) - \sigma(0.5 \cdot T)\right] = {\rm 2\, V}\cdot \left[0.25 - 0.1875\right] \hspace{0.15cm}\underline{= {\rm 0.125\, V}}.$$