Aufgaben:Aufgabe 1.8: Variable Flankensteilheit: Unterschied zwischen den Versionen
Nabil (Diskussion | Beiträge) |
|||
Zeile 1: | Zeile 1: | ||
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Systembeschreibung im Frequenzbereich}} | {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Systembeschreibung im Frequenzbereich}} | ||
− | [[Datei:P_ID867__LZI_A_1_8.png|right|Trapeztiefpass und Cosinus–Rolloff–Tiefpass | + | [[Datei:P_ID867__LZI_A_1_8.png|right|Trapeztiefpass und Cosinus–Rolloff–Tiefpass]] Zwei Tiefpässe mit variabler Flankensteilheit sollen miteinander verglichen werden. Für Frequenzen $|f| ≤ f_1$ gilt in beiden Fällen $H(f) = 1$. Dagegen werden alle Frequenzen $|f| ≥ f_2$ vollständig unterdrückt. |
Im mittleren Bereich $f_1 ≤ |f| ≤ f_2$ sind die Frequenzgänge durch die nachfolgenden Gleichungen festgelegt: | Im mittleren Bereich $f_1 ≤ |f| ≤ f_2$ sind die Frequenzgänge durch die nachfolgenden Gleichungen festgelegt: | ||
*Trapeztiefpass (TTP): | *Trapeztiefpass (TTP): | ||
Zeile 9: | Zeile 9: | ||
− | Alternative Systemparameter sind für beide Tiefpässe die über das flächengleiche Rechteck definierte äquivalente Bandbreite $Δf$ sowie der Rolloff–Faktor (im Frequenzbereich): | + | Alternative Systemparameter sind für beide Tiefpässe die über das flächengleiche Rechteck definierte |
+ | *äquivalente Bandbreite $Δf$, sowie | ||
+ | *der Rolloff–Faktor (im Frequenzbereich): | ||
$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$ | $$r=\frac{f_2 - f_1}{f_2 + f_1} .$$ | ||
− | In der gesamten Aufgabe gelte $Δf = | + | In der gesamten Aufgabe gelte $Δf = 10 \ \rm kHz$ und $r = 0.2$. Die Impulsantworten lauten mit der äquivalenten Impulsdauer $Δt = 1/Δf = 0.1 \ \rm ms$: |
$$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot | $$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot | ||
\frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$ | \frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$ | ||
Zeile 17: | Zeile 19: | ||
\frac{t}{\Delta t} )\cdot \frac {\cos(\pi \cdot r \cdot t / \Delta | \frac{t}{\Delta t} )\cdot \frac {\cos(\pi \cdot r \cdot t / \Delta | ||
t )}{1 - (2 \cdot r \cdot t/\Delta t )^2}.$$ | t )}{1 - (2 \cdot r \cdot t/\Delta t )^2}.$$ | ||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört bezieht sich auf die Seite [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Gau.C3.9F.E2.80.93Tiefpass|Gaußtiefpass]] . | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
Version vom 30. Januar 2017, 11:27 Uhr
Zwei Tiefpässe mit variabler Flankensteilheit sollen miteinander verglichen werden. Für Frequenzen $|f| ≤ f_1$ gilt in beiden Fällen $H(f) = 1$. Dagegen werden alle Frequenzen $|f| ≥ f_2$ vollständig unterdrückt.
Im mittleren Bereich $f_1 ≤ |f| ≤ f_2$ sind die Frequenzgänge durch die nachfolgenden Gleichungen festgelegt:
- Trapeztiefpass (TTP):
$$H(f) = \frac{f_2 - |f|}{f_2 - f_1} ,$$
- Cosinus–Rolloff–Tiefpass (CRTP):
$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$
Alternative Systemparameter sind für beide Tiefpässe die über das flächengleiche Rechteck definierte
- äquivalente Bandbreite $Δf$, sowie
- der Rolloff–Faktor (im Frequenzbereich):
$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$ In der gesamten Aufgabe gelte $Δf = 10 \ \rm kHz$ und $r = 0.2$. Die Impulsantworten lauten mit der äquivalenten Impulsdauer $Δt = 1/Δf = 0.1 \ \rm ms$: $$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot \frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$ $$h_{\rm CRTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot \frac{t}{\Delta t} )\cdot \frac {\cos(\pi \cdot r \cdot t / \Delta t )}{1 - (2 \cdot r \cdot t/\Delta t )^2}.$$
Hinweise:
- Die Aufgabe gehört bezieht sich auf die Seite Gaußtiefpass .
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 1.3. Sie können Ihre Ergebnisse mit folgendem Interaktionsmodul überprüfen:
Fragebogen
Musterlösung
- 1. Bei beiden Tiefpässen ist das Integral über H(f) gleich f1 + f2. Wegen H(f = 0) = 1 gilt somit auch der Lösungsvorschlag 2:
- $$\Delta f = f_1 + f_2.$$
- 2. Setzt man die unter a) gefundene Beziehung in die Definitionsgleichung des Rolloff–Faktors ein, so erhält man
- $${f_2 - f_1} = r \cdot \Delta f = {2\,\rm kHz}, \hspace{0.5cm} {f_2 + f_1} = {10\,\rm kHz}.$$
- Durch Addition bzw. Subtraktion beider Gleichungen ergeben sich die so genannten „Eckfrequenzen” zu f1 = 4 kHz und f2 = 6 kHz.
- 3. Die erste si–Funktion von hTTP(t) führt zu Nullstellen im Abstand Δt (siehe auch Gleichung auf der Angabenseite). Die zweite si–Funktion bewirkt Nullstellen bei Vielfachen von 5 · Δt. Da diese exakt mit den Nullstellen der ersten si–Funktion zusammenfallen, gibt es keine zusätzlichen Nullstellen.
- Der Sonderfall r = 0 entspricht dem idealen rechteckförmigen Tiefpass mit si–förmiger Impulsantwort. Diese klingt extrem langsam ab. Dagegen fällt die si2–förmige Impulsantwort des Dreiecktiefpasses (Sonderfall für r = 1) asymptotisch mit 1/t2 und damit schneller als mit r = 0.2.
- Richtig sind somit die Lösungsvorschläge 1 und 4.
- 4. hCRTP(t) weist aufgrund der si–Funktion ebenfalls Nullstellen im Abstand Δt auf. Die Cosinusfunktion hat Nullstellen zu folgenden Zeitpunkten:
- $${\cos(\pi \cdot r \cdot {t}/{ \Delta t} )} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}r \cdot {t}/{ \Delta t} = \pm 0.5, \pm 1.5, \pm 2.5, ... $$
- $$\Rightarrow \hspace{0.3cm} {t}/{ \Delta t} = \pm 2.5, \pm 7.5, \pm 12.5, ... $$
- Die Nullstelle des Zählers bei t/Δt = 2.5 wird allerdings durch den ebenfalls verschwindenden Nenner zunichte gemacht. Die weiteren Nullstellen bei 7.5, 12.5, usw. bleiben dagegen bestehen.
- Auch hier führt r = 0 zum Rechtecktiefpass und damit zur si–förmigen Impulsantwort. Dagegen klingt die Impulsantwort des Cosinus–Quadrat–Tiefpasses (Sonderfall für r = 1) extrem schnell ab. Dieser wird in der Zusatzaufgabe Z1.8 eingehend untersucht.
- Richtig sind hier die Vorschläge 1, 2 und 4.