Lineare zeitinvariante Systeme/Eigenschaften von Koaxialkabeln: Unterschied zwischen den Versionen
Zeile 85: | Zeile 85: | ||
*Der erste Term liefert die um die Phasenlaufzeit $τ_{\rm P} = b_1/2π$ verschobene Diracfunktion $δ(t – τ_{\rm P})$. | *Der erste Term liefert die um die Phasenlaufzeit $τ_{\rm P} = b_1/2π$ verschobene Diracfunktion $δ(t – τ_{\rm P})$. | ||
*Der zweite Term lässt sich analytisch geschlossen angeben. Wir schreiben hierfür $h_{\rm K}(t + τ_P)$. Im Gegensatz zu $h_{\rm K}(t)$ ist hier die Phasenlaufzeit $τ_{\rm P}$ nicht berücksichtigt. | *Der zweite Term lässt sich analytisch geschlossen angeben. Wir schreiben hierfür $h_{\rm K}(t + τ_P)$. Im Gegensatz zu $h_{\rm K}(t)$ ist hier die Phasenlaufzeit $τ_{\rm P}$ nicht berücksichtigt. | ||
− | $$h_{\rm K}(t + \tau_{\rm P}) = \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \hspace{0.05cm}R \hspace{0.05cm}t^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \hspace{0.05cm}R\hspace{0.05cm} t}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$ | + | :$$h_{\rm K}(t + \tau_{\rm P}) = \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \hspace{0.05cm}R \hspace{0.05cm}t^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \hspace{0.05cm}R\hspace{0.05cm} t}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$ |
*Da die Bitrate $R$ bereits bei der Definition der charakteristischen Kabeldämpfung $a_∗$ berücksichtigt wurde, lässt sich diese Gleichung mit der normierten Zeit $t' = t/T$ einfach darstellen, wobei $T = 1/R$ die Symboldauer eines Binärsystems angibt. Desweiteren gilt $τ_{\rm P} ' = τ_{\rm P}/T:$ | *Da die Bitrate $R$ bereits bei der Definition der charakteristischen Kabeldämpfung $a_∗$ berücksichtigt wurde, lässt sich diese Gleichung mit der normierten Zeit $t' = t/T$ einfach darstellen, wobei $T = 1/R$ die Symboldauer eines Binärsystems angibt. Desweiteren gilt $τ_{\rm P} ' = τ_{\rm P}/T:$ | ||
− | $$h_{\rm K}(t' + \tau_{\rm P} ') = \frac {1}{T} \cdot \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \hspace{0.05cm}t'^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \hspace{0.05cm}t'}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$ | + | :$$h_{\rm K}(t' + \tau_{\rm P} ') = \frac {1}{T} \cdot \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \hspace{0.05cm}t'^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \hspace{0.05cm}t'}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$ |
− | |||
+ | {{Beispiel}} | ||
+ | Die Ergebnisse dieser Seite werden durch die folgende Grafik beispielhaft verdeutlicht. Dargestellt ist die normierte Impulsantwort $T · h_{\rm K}(t)$ eines Koaxialkabels mit $\rm a_∗ = 60 \ dB \ (6.9\ Np)$. Die Dämpfungsmaßparameter $α_0$ und $α_1$ sind somit vernachlässigt. Für die linke Grafik wurde zudem der Parameter $β_1 = 0$ gesetzt. | ||
[[Datei:P_ID1803__LZI_4_2_S3_neu.png | Impulsantwort eines Koaxialkabels mit a∗ = 60 dB]] | [[Datei:P_ID1803__LZI_4_2_S3_neu.png | Impulsantwort eines Koaxialkabels mit a∗ = 60 dB]] | ||
+ | Wegen der Parametrisierung mittels der charakteristischen Kabeldämpfung $a_∗$ und der Normierung der Zeit auf die Symboldauer $T$ gilt die linke Kurve für Systeme mit Klein– bzw. Normalkoaxialkabel, unterschiedliche Längen und verschiedene Bitraten gleichermaßen, zum Beispiel für ein | ||
+ | *Normalkoaxialkabel 2.6/9.5 mm, Bitrate $R = 140 \ \rm Mbit/s$, Kabellänge $l = 3 \ \rm km$ ⇒ '''System A''', | ||
+ | *Kleinkoaxialkabel 1.2/4.4 mm, Bitrate $R = 35 \ \rm Mbit/s$, Kabellänge $l = 2.8 \ \rm km$ ⇒ '''System B'''. | ||
− | |||
− | |||
− | |||
+ | Man erkennt, dass sich selbst bei dieser moderaten Kabeldämpfung $\rm a_∗ = 60 \ \rm dB$ die Impulsantwort aufgrund des Skineffektes $(α_2 = β_2 ≠ 0$) schon über mehr als 200 Symboldauern erstreckt. Da das Integral über $h_{\rm K}(t)$ gleich $H_{\rm K}(f = 0) = 1$ ist, wird der Maximalwert sehr klein: ${\rm Max}[h_{\rm K}(t)] \approx 0.03$. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | In der rechten Grafik sind die Auswirkungen des Phasenparameters $β_1$ zu sehen. Beachten Sie bitte die unterschiedlichen Zeitmaßstäbe in der linken und der rechten Darstellung: | ||
+ | *Beim System '''A''' $(β_1 = 21.78 \ \rm rad/(km · MHz)$, $T = 7.14\ \rm ns$) führt $β_1$ zu einer Laufzeit von | ||
+ | :$$\tau_{\rm A}= \frac {\beta_1 \cdot l}{2\pi} =\frac {21.78\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 3\,{\rm km} }{2\pi} = 10.4\,{\rm \mu s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm A}' = {\tau_{\rm A}}/{T} \approx 1457\hspace{0.05cm}.$$ | ||
+ | *Dagegen erhält man für das System '''B''' $(β_1 = 22.18 \ \rm rad/(km · MHz)$, $T = 30 \ \rm ns$): | ||
+ | :$$\tau_{\rm B}= \frac {\beta_1 \cdot l}{2\pi} =\frac {22.18\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 2.8\,{\rm km} }{2\pi} = 9.9\,{\rm \mu s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm B}' ={\tau_{\rm B}}/{T} \approx 330\hspace{0.05cm}.$$ | ||
+ | Obwohl bei den getroffenen Annahmen $τ_{\rm A} ≈ τ_{\rm B}$ gilt, ergeben sich wegen der Zeitnormierung auf $T = 1/R$ völlig unterschiedliche Verhältnisse. | ||
− | + | {{end}} | |
− | Bei der Simulation und Optimierung von Nachrichtensystemen verzichtet man meist auf den Phasenterm mit $b_1 = β_1 · l$, da dieser ausschließlich eine Laufzeit, aber keine Signalverzerrung | + | Bei der Simulation und Optimierung von Nachrichtensystemen verzichtet man meist auf den Phasenterm mit $b_1 = β_1 · l$, da dieser ausschließlich eine (oft nicht störende) Laufzeit zur Folge hat, aber keine Signalverzerrung. |
==Empfangsgrundimpuls== | ==Empfangsgrundimpuls== |
Version vom 15. Februar 2017, 12:35 Uhr
Inhaltsverzeichnis
Übertragungsmaß von Koaxialkabeln
Koaxialkabel bestehen aus einem Innenleiter und – durch ein Dielektrikum getrennt – einem Außenleiter. Es wurden zwei unterschiedliche Kabeltypen standardisiert, wobei zur Kennzeichnung die Durchmesser von Innen– und Außenleiter herangezogen werden:
- das Normalkoaxialkabel, dessen Innenleiter einen Durchmesser von 2.6 mm besitzt und dessen Außendurchmesser 9.5 mm beträgt,
- das Kleinkoaxialkabel mit den Abmessungen 1.2 mm und 4.4 mm.
Der Kabelfrequenzgang $H_{\rm K}(f)$ ergibt sich aus der Kabellänge $l$ und dem Übertragungsmaß
$$\gamma(f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot (\beta_1 \cdot f + \beta_2 \cdot \sqrt {f})\hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-\gamma(f)\hspace{0.05cm} \cdot \hspace{0.05cm} l} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = {\rm e}^{-\alpha(f)\hspace{0.05cm} \cdot \hspace{0.05cm} l}\hspace{0.05cm}.$$
Die kabelspezifischen Konstanten für das Normalkoaxialkabel (2.6/9.5 mm) sind:
$$\begin{align*}\alpha_0 & = 0.00162\, \frac{ {\rm Np} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.000435\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.2722\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}, \\ \beta_1 & = 21.78\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.\end{align*}$$
Entsprechend lauten die kilometrischen Dämpfungs– und Phasenkonstanten für das Kleinkoaxialkabel (1.2/4.4 mm): $$\begin{align*}\alpha_0 & = 0.00783\, \frac{ {\rm Np} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.000443\, \frac{ {\rm Np} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.5984\, \frac{ {\rm Np} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}, \\ \beta_1 & = 22.18\, \frac{ {\rm rad} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.5984\, \frac{ {\rm rad} }{ {\rm km \cdot \sqrt{MHz} } } \hspace{0.05cm}.\end{align*}$$
Diese Werte können aus den geometrischen Abmessungen der Kabel berechnet werden und wurden durch Messungen am Fernmeldetechnischen Zentralamt in Darmstadt bestätigt – siehe [Wel77][1]. Sie gelten für eine Temperatur von 20°C (293 K) und Frequenzen größer als 200 kHz. Es besteht folgender Zusammenhang zu den Leitungsbelägen:
- Die vom frequenzunabhängigem Anteil $R’$ herrührenden Ohmschen Verluste werden durch den Parameter $α_0$ modelliert und verursachen eine (bei Koaxialkabeln geringe) frequenzunabhängige Dämpfung.
- Der Anteil $α_1 · f$ des Dämpfungsmaßes ist auf die Ableitungsverluste $(G’)$ zurückzuführen und der frequenzproportionale Term $β_1 · f$ bewirkt nur eine Phasenlaufzeit, aber keine Verzerrungen.
- Die Anteile $α_2$ und $β_2$ gehen auf den Skineffekt zurück, der bewirkt, dass bei höherfrequentem Wechselstrom die Stromdichte im Leiterinneren niedriger ist als an der Oberfläche. Dadurch steigt der Widerstandsbelag $R’$ einer elektrischen Leitung mit der Wurzel aus der Frequenz an.
Charakteristische Kabeldämpfung
Die folgende Grafik zeigt den frequenzabhängigen Dämpfungsverlauf für das Normalkoaxialkabel und das Kleinkoaxialkabel. Links dargestellt ist die Kabeldämpfung der zwei Koaxialkabeltypen im Frequenzbereich bis 500 MHz: $${\rm a}_{\rm K}(f) =\left [ \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} \hspace{0.05cm} \right ] \cdot l \hspace{0.05cm}.$$ Anmerkung:""
- Die Ordinatenbeschriftung ist hierbei in „Np/km” angegeben. Oft erfolgt sie auch in „dB/km” , wobei die Umrechnung $1 \ \rm dB = ln(10)/20 = 0.11513 \ Np$ gilt.
- Der Dämpfungsverlauf ist hier mit ${\rm a}_{\rm K}(f)$ bezeichnet und nicht mit ${a}_{\rm K}(f)$ ⇒ kursiv, um den Unterschied zwischen Dämpfungsmaß „alpha” und Dämpfungsfunktion „a” (nach Multiplikation mit der Länge) besser erkennbar zu machen.
Man erkennt aus dieser linken Darstellung, dass der Fehler bei Vernachlässigung des frequenzunabhängigen Anteils $α_0$ und des frequenzproportionalen Terms $(α_1\ f)$ noch tolerabel ist. Im Folgenden gehen wir deshalb von der folgenden vereinfachten Dämpfungsfunktion aus: $${\rm a}_{\rm K}(f) = \alpha_2 \cdot \sqrt {f} \cdot l = {\rm a}_{\rm \star}\cdot \sqrt { {2f}/{R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = {\rm e}^{- {\rm a}_{\rm K}(f)}\hspace{0.05cm}, \hspace{0.2cm} {\rm a}_{\rm K}(f)\hspace{0.15cm}{\rm in }\hspace{0.15cm}{\rm Np}\hspace{0.05cm}.$$
Die charakteristische Kabeldämpfung $\rm a_∗$ eignet sich insbesondere für den Vergleich verschiedener leitungsgebundener Übertragungssysteme mit unterschiedlichen Bitraten $(R)$, Kabeltypen (zum Beispiel Normal– oder Kleinkoaxialkabel) und Kabellängen $l$. Bei all diesen Übertragungssystemen beschreibt $a_∗$ die Dämpfung bei der halben Bitrate unter Vernachlässigung des $α_0$– und des $α_1$–Terms: $${\rm a}_{\rm \star} = {\rm a}_{\rm K}(f = {R}/{2}) = \alpha_2 \cdot \sqrt {{R}/{2}} \cdot l\hspace{0.05cm}.$$
Das rechte Diagramm zeigt die charakteristische Kabeldämpfung $\rm a_∗$ in „Neper” (Np) in Abhängigkeit der Bitrate $R$ und der Kabellänge $l$
- beim Normalkoaxialkabel (linke Ordinatenbeschriftung) und
- beim Kleinkoaxialkabel (rechte Ordinatenbeschriftung).
In dieser Grafik eingezeichnet sind die vom CCITT in den 1970–Jahren vorgeschlagenen PCM–Systeme der Hierarchiestufen $3$ bis $5$. Man erkennt:
- Bei all diesen Systemen zur PCM–Sprachübertragung nimmt die charakteristische Kabeldämpfung Werte zwischen $7 \ \rm Np \ (≈ 61 dB)$ und $10.6 \ \rm Np \ (≈ 92 dB)$ an.
- Das System PCM 480 – ausgelegt für 480 gleichzeitige Telefonate – mit der Bitrate $R ≈ 35 \ \rm Mbit/s$ wurde sowohl für das Normalkoaxialkabel (mit der Leitungslänge $l = 9.3 \ \rm km$) als auch für das Kleinkoaxialkabel (mit $l = 4 \ \rm km$) spezifiziert. Die $\rm a_∗$–Werte $10.4\ \rm Np$ bzw. $9.9\ \rm Np$ liegen in der gleichen Größenordnung.
- Das Übertragungssystem PCM 1920 der vierten Hierarchiestufe (spezifiziert für das Normalkoaxialkabel) mit $R ≈ 140 \ \rm Mbit/s$ und $l = 4.65 \ \rm km$, wird durch $\rm a_∗ = 10.6 \ \rm Np$ bzw. $10.6 · 8.688 \ \rm dB/Np ≈ 92\ \rm dB$ parametrisiert.
- Obwohl das System PCM 7680 demgegenüber zwar die vierfache Kapazität $R ≈ 560 \ \rm Mbit/s$ aufweist, ist die charakteristische Kabeldämpfung mit $\rm a_∗ ≈ 61 \ dB$ aufgrund des besseren Mediums „Normalkoaxialkabel” und der um den Faktor $3$ kürzeren Kabelabschnitte ($l = 1.55 \ \rm km$) deutlich geringer.
- Aus diesen Zahlenwerten geht auch hervor, dass bei Koaxialkabelsystemen die Kabellänge $l$ kritischer ist als die Bitrate $R$. Will man die Kabellänge verdoppeln, muss man die Bitrate um den Faktor $4$ herabsetzen.
Die hier beschriebene Thematik können Sie sich auch mit folgendem Interaktionsmodul verdeutlichen:
Dämpfung von Kupferkabeln
Impulsantworten von Koaxialkabeln
Zur Berechnung der Impulsantwort können von den fünf Anteilen des Übertragungsmaßes die beiden ersten Dämpfungsanteile vernachlässigt werden (Begründung siehe vorheriger Abschnitt): $$\gamma(f) = \alpha_0 + \alpha_1 \cdot f + {\rm j} \cdot \beta_1 \cdot f +\alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot \beta_2 \cdot \sqrt {f} \approx {\rm j} \cdot \beta_1 \cdot f +\alpha_2 \cdot \sqrt {f}+ {\rm j}\cdot \beta_2 \cdot \sqrt {f} \hspace{0.05cm}.$$
Unter Berücksichtigung
- der Kabellänge $l$,
- der charakteristischen Kabeldämpfung $\rm a_∗$ und
- der Tatsache, dass $α_2$ (in Np) und $β_2$ (in rad) zahlenmäßig gleich sind,
gilt somit für den Frequenzgang des Koaxialkabels:
$$H_{\rm K}(f) = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f} \cdot {\rm e}^{-{\rm a}_{\rm \star}\hspace{0.05cm}\cdot \hspace{0.05cm} \sqrt{2f/R} }\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}{\rm a}_{\rm \star}\hspace{0.05cm}\cdot \hspace{0.02cm} \sqrt{2f/R}}= {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f} \cdot {\rm e}^{-2{\rm a}_{\rm \star}\hspace{0.03cm}\cdot \hspace{0.03cm} \sqrt{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}f/R}} \hspace{0.05cm}.$$
Hierbei wurden folgende Abkürzungen verwendet:
$$b_1\hspace{0.1cm}{(\rm in }\hspace{0.15cm}{\rm rad)}= \beta_1 \cdot l \hspace{0.05cm}, \hspace{0.2cm} {\rm a}_{\rm \star}\hspace{0.1cm}{(\rm in }\hspace{0.15cm}{\rm Np)}= \alpha_2 \cdot \sqrt {R/2} \cdot l \hspace{0.05cm}.$$
Zur Zeitbereichsdarstellung kommt man durch Anwendung der Fourierrücktransformation und des Faltungssatzes: $$h_{\rm K}(t) = {\rm F}^{-1} \left \{ {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} b_1 f}\right \} \star {\rm F}^{-1} \left \{ {\rm e}^{-2{\rm a}_{\rm \star}\hspace{0.03cm}\cdot \hspace{0.03cm} \sqrt{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}f/R} }\right \} \hspace{0.05cm}.$$
Hierbei ist zu berücksichtigen:
- Der erste Term liefert die um die Phasenlaufzeit $τ_{\rm P} = b_1/2π$ verschobene Diracfunktion $δ(t – τ_{\rm P})$.
- Der zweite Term lässt sich analytisch geschlossen angeben. Wir schreiben hierfür $h_{\rm K}(t + τ_P)$. Im Gegensatz zu $h_{\rm K}(t)$ ist hier die Phasenlaufzeit $τ_{\rm P}$ nicht berücksichtigt.
- $$h_{\rm K}(t + \tau_{\rm P}) = \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \hspace{0.05cm}R \hspace{0.05cm}t^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \hspace{0.05cm}R\hspace{0.05cm} t}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$
- Da die Bitrate $R$ bereits bei der Definition der charakteristischen Kabeldämpfung $a_∗$ berücksichtigt wurde, lässt sich diese Gleichung mit der normierten Zeit $t' = t/T$ einfach darstellen, wobei $T = 1/R$ die Symboldauer eines Binärsystems angibt. Desweiteren gilt $τ_{\rm P} ' = τ_{\rm P}/T:$
- $$h_{\rm K}(t' + \tau_{\rm P} ') = \frac {1}{T} \cdot \frac {{\rm a}_{\rm \star}}{\pi \cdot \sqrt{2 \hspace{0.05cm}t'^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \hspace{0.05cm}t'}} \right ]\hspace{0.05cm},\hspace{0.2cm}{\rm a}_{\rm \star}\hspace{0.15cm}{\rm in\hspace{0.15cm} Np}\hspace{0.05cm}.$$
Die Ergebnisse dieser Seite werden durch die folgende Grafik beispielhaft verdeutlicht. Dargestellt ist die normierte Impulsantwort $T · h_{\rm K}(t)$ eines Koaxialkabels mit $\rm a_∗ = 60 \ dB \ (6.9\ Np)$. Die Dämpfungsmaßparameter $α_0$ und $α_1$ sind somit vernachlässigt. Für die linke Grafik wurde zudem der Parameter $β_1 = 0$ gesetzt.
Wegen der Parametrisierung mittels der charakteristischen Kabeldämpfung $a_∗$ und der Normierung der Zeit auf die Symboldauer $T$ gilt die linke Kurve für Systeme mit Klein– bzw. Normalkoaxialkabel, unterschiedliche Längen und verschiedene Bitraten gleichermaßen, zum Beispiel für ein
- Normalkoaxialkabel 2.6/9.5 mm, Bitrate $R = 140 \ \rm Mbit/s$, Kabellänge $l = 3 \ \rm km$ ⇒ System A,
- Kleinkoaxialkabel 1.2/4.4 mm, Bitrate $R = 35 \ \rm Mbit/s$, Kabellänge $l = 2.8 \ \rm km$ ⇒ System B.
Man erkennt, dass sich selbst bei dieser moderaten Kabeldämpfung $\rm a_∗ = 60 \ \rm dB$ die Impulsantwort aufgrund des Skineffektes $(α_2 = β_2 ≠ 0$) schon über mehr als 200 Symboldauern erstreckt. Da das Integral über $h_{\rm K}(t)$ gleich $H_{\rm K}(f = 0) = 1$ ist, wird der Maximalwert sehr klein: ${\rm Max}[h_{\rm K}(t)] \approx 0.03$.
In der rechten Grafik sind die Auswirkungen des Phasenparameters $β_1$ zu sehen. Beachten Sie bitte die unterschiedlichen Zeitmaßstäbe in der linken und der rechten Darstellung:
- Beim System A $(β_1 = 21.78 \ \rm rad/(km · MHz)$, $T = 7.14\ \rm ns$) führt $β_1$ zu einer Laufzeit von
- $$\tau_{\rm A}= \frac {\beta_1 \cdot l}{2\pi} =\frac {21.78\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 3\,{\rm km} }{2\pi} = 10.4\,{\rm \mu s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm A}' = {\tau_{\rm A}}/{T} \approx 1457\hspace{0.05cm}.$$
- Dagegen erhält man für das System B $(β_1 = 22.18 \ \rm rad/(km · MHz)$, $T = 30 \ \rm ns$):
- $$\tau_{\rm B}= \frac {\beta_1 \cdot l}{2\pi} =\frac {22.18\, { {\rm rad} }/{ {(\rm km \cdot MHz)} }\cdot 2.8\,{\rm km} }{2\pi} = 9.9\,{\rm \mu s}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\tau_{\rm B}' ={\tau_{\rm B}}/{T} \approx 330\hspace{0.05cm}.$$
Obwohl bei den getroffenen Annahmen $τ_{\rm A} ≈ τ_{\rm B}$ gilt, ergeben sich wegen der Zeitnormierung auf $T = 1/R$ völlig unterschiedliche Verhältnisse.
Bei der Simulation und Optimierung von Nachrichtensystemen verzichtet man meist auf den Phasenterm mit $b_1 = β_1 · l$, da dieser ausschließlich eine (oft nicht störende) Laufzeit zur Folge hat, aber keine Signalverzerrung.
Empfangsgrundimpuls
Mit dem Sendegrundimpuls $g_s(t)$ und der Impulsantwort $h_{\rm K}(t)$ ergibt sich für den Empfangsgrundimpuls: $$g_r(t) = g_s(t) \star h_{\rm K}(t)\hspace{0.05cm}.$$ Verwendet man am Sender einen NRZ–Rechteckimpuls $g_s(t)$ mit der Amplitude $s_0$ und Dauer $Δt_s = T$, so ergibt sich für den Grundimpuls am Ausgang des Koaxialkabels: $$g_r(t) = 2 s_0 \cdot \left [ {\rm Q} \left (\frac {{\rm a}_{\rm \star}/\sqrt {\pi}}{ \sqrt{ (t/T - 0.5)}}\right ) - {\rm Q} \left (\frac {{\rm a}_{\rm \star}/\sqrt {\pi}}{ \sqrt{ (t/T + 0.5)}}\right ) \right ]\hspace{0.05cm},$$ mit $a_∗$: charakteristische Kabeldämpfung in Neper, $Q(x)$: komplemantäre Gaußsche Fehlerfunktion.
Die Abbildung zeigt die normierte Koaxialkabelimpulsantwort $T · h_{\rm K}(t)$ und den auf die Sendeamplitude $s_0$ normierten Empfangsgrundimpuls $g_r(t)$ für die charakteristischen Kabeldämpfungen $a_∗ =$ 40 dB, 60 dB, 80 dB und 100 dB. Kleinere Werte von $a_∗$ sind für die Praxis nicht relevant.
Man erkennt aus dieser Darstellung:
- Mit $a_∗ =$ 40 dB ist $g_r(t)/s_0$ an der Spitze geringfügig (etwa um den Faktor 0.95) kleiner als die normierte Impulsantwort $T · h_{\rm K}(t)$.
- Dagegen sind für den Fall $a_∗ ≥$ 60 dB die Rechteckantwort und die Impulsantwort innerhalb der Zeichengenauigkeit nicht zu unterscheiden.
- Bei einem RZ–Impuls ist die obige Gleichung für den Empfangsgrundimpuls noch mit dem Tastverhältnis $Δts/T$ zu multiplizieren. In diesem Fall ist $g_r(t)/s_0$ deutlich kleiner als $T · h_{\rm K}(t)$.
- Die so modifizierte Gleichung stellt auch eine gute Näherung für andere Sendegrundimpulse dar, so lange $a_∗$ hinreichend groß ist (≥ 60 dB). $Δt_s$ gibt dann die äquivalente Sendeimpulsdauer an.
Wir möchten Sie auf ein Interaktionsmodul hinweisen, das die hier behandelte Thematik zum Inhalt hat:
$$\href{http://www.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=2430&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross&session_id=7761LSYGTN1463149483}{Zeitverhalten von Kupferkabeln}$$
Einige Bemerkungen zu Koaxialkabelsystemen
Geht man von binärer Übertragung mit NRZ–Rechteckimpulsen (Symboldauer $T$) und einem koaxialen Übertragungskanal aus, so ergibt sich das folgende Systemmodell:
Insbesondere ist zu beachten:
- Bei einer Simulation lässt man zweckmäßigerweise die Laufzeit des Koaxialkabels außer Betracht. Dann gilt für den Empfangsgrundimpuls näherungsweise:
$$g_r(t) \approx s_0 \cdot T \cdot h_{\rm K}(t) = \frac {s_0 \cdot {\rm a}_{\rm \star}/\pi}{ \sqrt{2 \hspace{0.05cm}(t/T)^3}}\cdot {\rm exp} \left [ -\frac {{\rm a}_{\rm \star}^2}{ {2\pi \hspace{0.05cm}t/T}} \right ] \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm} {\rm mit}\hspace{0.15cm}{\rm a}_{\rm \star}\hspace{0.15cm} {\rm in}\hspace{0.15cm} {\rm Neper}\hspace{0.05cm}.$$
- Das thermische Rauschen ist wegen der sehr guten Abschirmung der Koaxialkabel gegenüber anderen Störungen die dominante Störursache. $n(t)$ ist gaußverteilt und weiß und wird durch die (zweiseitige) Rauschleistungsdichte $N_0/2$ beschrieben.
- Der weitaus größte Rauschanteil entsteht in der Eingangsstufe des Empfängers, so dass man $n(t)$ zweckmäßigerweise an der Schnittstelle Kabel–Empfänger addiert:
$$r(t) = \sum_{\nu = - \infty}^{+ \infty}a_{\nu}\cdot g_r(t - \nu \cdot T)+ n(t) \hspace{0.05cm} .$$
- Dieser Punkt ist auch deshalb sinnvoll, da alle entlang des Kabels akkumulierten Rauschstörungen durch den Kabelfrequenzgang $H_{\rm K}(f)$ entscheidend gedämpft werden.
Quellenverzeichnis
- ↑ Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren.. Frequenz 31, S. 23-28, 1977.