Aufgabe 2.6Z: PN-Generator der Länge 3: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 61: Zeile 61:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
[[Datei:P_ID107__Sto_Z_2_6b.png|right|PN–Generator mit Oktalkennung 15]]
 
[[Datei:P_ID107__Sto_Z_2_6b.png|right|PN–Generator mit Oktalkennung 15]]
'''(1)'''&nbsp; Es handelt sich um eine M-Sequenz mit <i>L</i> = 3. Daraus folgt <u><i>P</i> = 2<sup><i>L</i></sup> - 1 = 7</u>.
+
'''(1)'''&nbsp; Es handelt sich um eine M-Sequenz mit $L= 3$. Daraus folgt $P= 2^L - 1 \hspace{0.15cm}\underline{= 7}$.
  
 +
'''(2)'''&nbsp; Wir bezeichnen die Zellen von links nach rechts mit $S_1$, $S_2$ und $S_3$. Dann gilt:
  
'''(2)'''&nbsp; Wir bezeichnen die Zellen von links nach rechts mit <i>S</i><sub>1</sub>, <i>S</i><sub>2</sub> und <i>S</i><sub>3</sub>. Dann gilt:
+
* $S_2(\nu) = S_1(\nu - 1)$,
 +
* $S_3(\nu) = S_2(\nu - 1)$,
 +
* $S_1(\nu) = S_2(\nu - 1) \ {\rm mod } \ S_3(\nu - 1)$.
  
* <i>S</i><sub>2</sub>(<i>&nu;</i>) = <i>S</i><sub>1</sub>(<i>&nu;</i> &ndash; 1),
 
* <i>S</i><sub>3</sub>(<i>&nu;</i>) = <i>S</i><sub>2</sub>(<i>&nu;</i> &ndash; 1),
 
:* <i>S</i><sub>3</sub>(<i>&nu;</i>) = <i>S</i><sub>2</sub>(<i>&nu;</i> &ndash; 1) mod <i>S</i><sub>3</sub>(<i>&nu;</i> &ndash; 1).
 
  
 
Das Ergebnis ist in der ersten Zeile obiger Tabelle (rot markiert) eingetragen:
 
Das Ergebnis ist in der ersten Zeile obiger Tabelle (rot markiert) eingetragen:
 +
*Zum Taktzeitpunkt $\nu = 7$ ergibt sich die gleiche Speicherbelegung wie zum Zeitpunkt  $\nu = 0$.
 +
*Daraus folgt $ {P = 7}$ und die Folge lautet ab $\nu = 1$ entsprechend dem <u>Vorschlag 3</u> :
 +
:$$\langle z_\nu \rangle = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ ...$$
 +
 +
Dagegen beschreibt Vorschlag 1 die M-Sequenz des PN-Generators mit L&auml;nge $L=4$ und Kennung $(31)$ &nbsp; &rArr;&nbsp; Periodenl&auml;nge ist $P= 15$. Beim Vorschlag 2 ist die Periodenl&auml;ng $P= 4$ zu kurz.
  
Zum Taktzeitpunkt <i>&nu;</i> = 7 ergibt sich die gleiche Speicherbelegung wie zum Zeitpunkt <i>&nu;</i> = 0. Daraus folgt <i>P</i> = 7 und die Folge ist ab <i>&nu;</i> = 1: &#9001;<i>z<sub>&nu;</sub></i>&#9002; = &#9001; 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 ... &#9002;.
+
Der letzte Vorschlag schließlich hätte zwar die gew&uuml;nschte Periodenl&auml;nge $P= 7$, aber aus der Modulo-2-Addition von $S_2= 0$ und $S_3= 1$ (f&uuml;r $\nu = 0$) folgt zum n&auml;chsten Zeitpunkt ($\nu = 1$) zwingend: $S_1= 1$. Diese Eigenschaft zeigt die Folge 4 nicht.
  
<u>Vorschlag 3</u> ist der richtige. Vorschlag 1 beschreibt die M-Sequenz des PN-Generators mit L&auml;nge <i>L</i> = 4 und Kennung (31); die Periodenl&auml;nge ist <i>P</i> = 15. Beim Vorschlag 2 ist <i>P</i> = 4.
 
  
:Der letzte Vorschlag schließlich hätte zwar die gew&uuml;nschte Periodenl&auml;nge <i>P</i> = 7, aber aus der Modulo-2-Addition von <i>S</i><sub>2</sub> = 0 und <i>S</i><sub>3</sub> = 1 (f&uuml;r <i>&nu;</i> = 0) folgt zum n&auml;chsten Zeitpunkt (<i>&nu;</i> = 1) zwingend: <i>S</i><sub>1</sub> = 1. Diese Eigenschaft zeigt die Folge 4 nicht.
+
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2, 3 und 4</u>:
 +
*Die maximale Anzahl aufeinander folgender Einsen ist $L$ (n&auml;mlich dann, wenn in allen  $L$ Speicherzellen eine Eins steht).
 +
*Es ist dagegen nicht m&ouml;glich, dass alle Speicherzellen mit Nullen belegt sind. Deshalb gibt es stets eine Eins mehr als Nullen.
 +
*Die Periodenl&auml;nge der letzten Folge betr&auml;gt $P = 2$. Bei einer M-Sequenz gilt dagegen $P= 2^L - 1.$ F&uuml;r keinen Wert von $L$ ist $P = 2$ m&ouml;glich.
  
'''(3)'''&nbsp; Die maximale Anzahl aufeinander folgender Einsen ist <i>L</i> (n&auml;mlich dann, wenn in allen <i>L</i> Speicherzellen eine Eins steht). Es ist dagegen nicht m&ouml;glich, dass alle Speicherzellen mit Nullen belegt sind. Deshalb gibt es stets eine Eins mehr als Nullen.
 
  
:Die Periodenl&auml;nge der letzten Folge betr&auml;gt <i>P</i> = 2. Bei einer M-Sequenz gilt dagegen <i>P</i> = 2<sup><i>L</i></sup> &ndash; 1. F&uuml;r keinen Wert von <i>L</i> ist <i>P</i> = 2 m&ouml;glich.
+
[[Datei: P_ID2897__Sto_Z_2_6d.png|right|PN&ndash;Generator mit Oktalkennung 13]]
 
+
'''(4)'''&nbsp; In nebenstehender Tabelle ist die Entstehung der PN&ndash;Folge beim reziproken Polynom $G_{\rm R}(D)$ eingetragen. Man erkennt, dass der  <u>Lösungsvorschlag 2</u> zutrifft:
:Richtig sind somit die <u>Lösungsvorschläge 2, 3 und 4</u>.
+
*Auch bei der reziproken Anordnung muss die Periodenl&auml;nge $P = 7$ gelten, so dass der Vorschlag 1 (mit $P = 15$) ausscheidet.  
 
+
*Der Vorschlag 3 ist nur eine um zwei Zeittakte verschobene Version der Ausgangsfolge von $(15)$.  
'''(4)'''&nbsp; Auch bei der reziproken Anordnung muss die Periodenl&auml;nge <i>P</i> = 7 gelten, so dass der Vorschlag 1 (mit <i>P</i> = 15) ausscheidet. Der Vorschlag 3 ist nur eine um 2 Zeittakte verschobene Version der Ausgangsfolge von (15). Dagegen ist im zweiten Vorschlag die Inverse von .... 1 1 0 0 1 0 1 ... &ndash; also die Folge ... 1 0 1 0 0 1 1 ... &ndash; enthalten, wenn auch mit einem Phasenversatz.
+
*Dagegen ist im (richtigen) zweiten Vorschlag die Inverse von ...$ 1 \ 1 \ 0 \ 0 \ 1 \ 0 1$ ... &ndash; also die Folge ...$ 1 \ 0 \ 1 0 \ 0 \ 1 \ 1$ ... &ndash; enthalten, wenn auch mit einem Phasenversatz.
  
[[Datei: P_ID2897__Sto_Z_2_6d.png|right|PN&ndash;Generator mit Oktalkennung 13]]
 
:In der unteren Tabelle ist die Entstehung der PN&ndash;Folge beim reziproken Polynom <i>G</i><sub>R</sub>(<i>D</i>)  eingetragen. Die Tabelle bestätigt die Richtigkeit von <u>Lösungsvorschlag 2</u>.
 
<br><br><br>
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 6. März 2017, 12:50 Uhr

PN-Generator der Länge 3

Nebenstehende Skizze zeigt einen PN-Generator der Länge $L = 3$ mit dem Generatorpolynom

$$G( D) = D^{\rm 3} + D^{\rm 2} + \rm 1$$

und somit der Oktalkennung ($g_3 \ g_2 \ g_1 \ g_0$) = $(1 \ 1 \ 0 \ 1)_{\rm bin} = (15)_{\rm oct}$.

Das zugehörige reziproke Polynom $$G_{\rm R}(D) = D^{\rm 3} ( D^{\rm -3} + D^{\rm -2} + 1) = D^{\rm 3} + D^{\rm 1} + \rm 1$$

hat die Oktalkennung $(1 \ 0 \ 1 \ 1)_{\rm bin} = (13)_{\rm oct}$.

  • Zum Startzeitpunkt seien die drei Speicherzellen mit den Binärwerten $1$, $0$ und $1$ vorbelegt.
  • Beide Anordnungen erzeugen eine M-Sequenz.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Erzeugung von diskreten Zufallsgrößen.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Wir möchten Sie gerne auch auf das folgende Lernvideo hinweisen:
Verdeutlichung der PN-Generatoren am Beispiel ''L'' = 4


Fragebogen

1

Wie groß ist die Periodenlänge der Konfiguration $(15)$?

$P \ = $

2

Ermitteln Sie die Ausgangsfolge $〈z_ν\rangle$ für die Zeitpunkte $1$, ... , $P$. Wie lauten die ersten 15 Binärwerte der Ausgangsfolge? Hinweis: Bezeichnen Sie die Zellen von links nach rechts mit $S_1$, $S_2$ und $S_3$. Ausgegeben wird der Wert $z_ν$, der zum Zeitpunkt $\nu$ in die Speicherzelle $S_1$ eingetragen wird.

$1\ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0$ . . .
$1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 $ . . .
$1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$ . . .
$0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 $. . .

3

Welche der folgenden Aussagen treffen für jede M-Sequenz zu?

Die Anzahl der Nullen und Einsen ist gleich.
In jeder Periode gibt es eine Eins mehr als Nullen.
Die maximale Anzahl aufeinander folgender Einsen ist $L$.
Die Folge $1 \ 0 \ 1 \ 0 \ 1 \ 0 $ . . . ist nicht möglich.

4

Betrachten Sie nun die reziproke Anordnung $(13)$. Wie lauten hier die ersten 15 Binärwerte der Ausgangsfolge bei gleicher Anfangsbelegung?

$0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 $ . . .
$0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 $ . . .
$0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 $ . . .


Musterlösung

PN–Generator mit Oktalkennung 15

(1)  Es handelt sich um eine M-Sequenz mit $L= 3$. Daraus folgt $P= 2^L - 1 \hspace{0.15cm}\underline{= 7}$.

(2)  Wir bezeichnen die Zellen von links nach rechts mit $S_1$, $S_2$ und $S_3$. Dann gilt:

  • $S_2(\nu) = S_1(\nu - 1)$,
  • $S_3(\nu) = S_2(\nu - 1)$,
  • $S_1(\nu) = S_2(\nu - 1) \ {\rm mod } \ S_3(\nu - 1)$.


Das Ergebnis ist in der ersten Zeile obiger Tabelle (rot markiert) eingetragen:

  • Zum Taktzeitpunkt $\nu = 7$ ergibt sich die gleiche Speicherbelegung wie zum Zeitpunkt $\nu = 0$.
  • Daraus folgt $ {P = 7}$ und die Folge lautet ab $\nu = 1$ entsprechend dem Vorschlag 3 :
$$\langle z_\nu \rangle = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ ...$$

Dagegen beschreibt Vorschlag 1 die M-Sequenz des PN-Generators mit Länge $L=4$ und Kennung $(31)$   ⇒  Periodenlänge ist $P= 15$. Beim Vorschlag 2 ist die Periodenläng $P= 4$ zu kurz.

Der letzte Vorschlag schließlich hätte zwar die gewünschte Periodenlänge $P= 7$, aber aus der Modulo-2-Addition von $S_2= 0$ und $S_3= 1$ (für $\nu = 0$) folgt zum nächsten Zeitpunkt ($\nu = 1$) zwingend: $S_1= 1$. Diese Eigenschaft zeigt die Folge 4 nicht.


(3)  Richtig sind die Lösungsvorschläge 2, 3 und 4:

  • Die maximale Anzahl aufeinander folgender Einsen ist $L$ (nämlich dann, wenn in allen $L$ Speicherzellen eine Eins steht).
  • Es ist dagegen nicht möglich, dass alle Speicherzellen mit Nullen belegt sind. Deshalb gibt es stets eine Eins mehr als Nullen.
  • Die Periodenlänge der letzten Folge beträgt $P = 2$. Bei einer M-Sequenz gilt dagegen $P= 2^L - 1.$ Für keinen Wert von $L$ ist $P = 2$ möglich.


PN–Generator mit Oktalkennung 13

(4)  In nebenstehender Tabelle ist die Entstehung der PN–Folge beim reziproken Polynom $G_{\rm R}(D)$ eingetragen. Man erkennt, dass der Lösungsvorschlag 2 zutrifft:

  • Auch bei der reziproken Anordnung muss die Periodenlänge $P = 7$ gelten, so dass der Vorschlag 1 (mit $P = 15$) ausscheidet.
  • Der Vorschlag 3 ist nur eine um zwei Zeittakte verschobene Version der Ausgangsfolge von $(15)$.
  • Dagegen ist im (richtigen) zweiten Vorschlag die Inverse von ...$ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1$ ... – also die Folge ...$ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$ ... – enthalten, wenn auch mit einem Phasenversatz.