Aufgaben:Aufgabe 5.2: Bestimmung des Frequenzgangs: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 54: Zeile 54:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Bei der AKF-Berechnung gehen Phasenbeziehungen verloren. Die zugehörigen Funktionen <i>&Phi;<sub>x</sub></i>(<i>f</i>) und <i>&Phi;</i><i><sub>y</sub></i>(<i>f</i>) im Spektralbereich sind rein reell, so dass nur der Betrag |<i>H</i>(<i>f</i>)| angegeben werden kann.
+
'''(1)'''&nbsp; Die <u>Aussagen 2 und 3</u> sind zutreffend, da folgende Gleichungen gelten:
 
 
:Die <u>Aussagen 2 und 3</u> sind zutreffend, da folgende Gleichungen gelten:
 
 
:$$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad  \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$
 
:$$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad  \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$
 
:$$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad  \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$
 
:$$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad  \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$
 +
*Dagegen ist die erste Aussage falsch: Bei der AKF-Berechnung gehen die Phasenbeziehungen verloren. Die zugehörigen Funktionen zu $\varphi_x(\tau)$ und $\varphi_x(\tau)$ im Spektralbereich &ndash; nämlich ${\it \Phi}_x$ und  ${\it \Phi}_y$ &ndash; sind rein reell, so dass nur der Betrag $|H(f)|$ angegeben werden kann.
  
:<b>2.</b>&nbsp;&nbsp;Bei diracförmiger Eingangs-AKF <i>&phi;<sub>x</sub></i>(<i>&tau;</i>) ist die Impulsantwort <i>h</i>(<i>t</i>) formgleich mit der KKF:
 
:$$h(t) = \frac{{K \cdot {\rm{e}}^{ - t/T_0 } }}{N_0 /2} = 1.256 \cdot 10^{ - 2} \frac{1}{{\rm{s}}} \cdot {\rm{e}}^{ - t/T_0 } .$$
 
 
:Für <i>t</i> = <i>T</i><sub>0</sub> ergibt sich der Wert <u>4.62 &middot; 10<sup>&ndash;3</sup> 1/s</u>.
 
  
:<b>3.</b>&nbsp;&nbsp;Die angegebene Fourierkorrespondenz lautet mit <i>T</i><sub>0</sub> = 1/<i>&omega;</i><sub>0</sub> und <i>C</i> = <i>N</i><sub>0</sub>/2 &middot; <i>T</i><sub>0</sub>/<i>K</i>:
+
'''(2)'''&nbsp; Bei diracförmiger Eingangs-AKF $\varphi_x(\tau)$ ist die Impulsantwort $h(t)$ formgleich mit der KKF:
:$$h(t) = \frac{C}{T_0 } \cdot {\rm{e}}^{ - t/T_0 }\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, H( \omega  ) = \frac{C}{{1 + {\rm{j}}\omega T_0 }}.$$
+
:$$h(t) = \frac{{K \cdot {\rm{e}}^{ - t/T_0 } }}{N_0 /2} = 1.256 \cdot 10^{ - 2} \frac{1}{{\rm{s}}} \cdot {\rm{e}}^{ - t/T_0 } $$
 +
$$\Rightarrow \hspace{0.3cm}h(t = T_0)\hspace{0.15cm}\underline{ = 4.62 \cdot 10^{-3}\ \rm 1/s}.$$
  
:Die Konstante ergibt sich zu <i>C</i> = 0.08. Mit <i>H</i>(<i>f</i>) = 2&pi; &middot; <i>H</i>(<i>&omega;</i>) folgt daraus:
+
'''(3)'''&nbsp; Die angegebene Fourierkorrespondenz lautet mit $T_0 = 1/\omega_0$ und der Konstanten $C= N_0/2 \cdot T_0/K$:
:$$H(f) = \frac{0.5}{1 + {\rm{j2\pi }}fT_0 }.$$
+
:$$h(t) = \frac{C}{T_0 } \cdot {\rm{e}}^{ - t/T_0 }\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} H( \omega  ) = \frac{C}{{1 + {\rm{j}}\omega T_0 }}.$$
  
:Damit ergibt sich der Gleichsignalübertragungsfaktor <u>zu 0.5</u>.
+
Die Konstante ergibt sich zu $C = 0.08$. Mit $H(f) = 2 \pi \cdot  H(\omega)$ folgt daraus:
 +
:$$H(f) = \frac{0.5}{1 + {\rm{j2\pi }}fT_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f= 0) \hspace{0.15cm}\underline{=2}.$$
  
:<b>4.</b>&nbsp;&nbsp;Für das Ausgangs-LDS gilt im Allgemeinen bzw. speziell hier:
 
:$${\it \Phi}_y (f) = {\it \Phi} _x (f) \cdot \left| {H(f)} \right|^2  = \frac{N_0 }{2} \cdot \frac{0.5^2 }{{\left( {1 + {\rm{j2\pi }}fT_0 } \right)\left( {1 - {\rm{j2\pi }}fT_0 } \right)}}.$$
 
  
:Dies führt zum Ergebnis:
+
'''(4)'''&nbsp; Für das Ausgangs-LDS gilt im Allgemeinen bzw. speziell hier:
:$${\it \Phi}_y (f) = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}fT_0 } \right)^2 }.$$
+
:$${\it \Phi}_y (f) = {\it \Phi} _x (f) \cdot \left| {H(f)} \right|^2  = \frac{N_0 }{2} \cdot \frac{0.5^2 }{{\left( {1 + {\rm{j2\pi }}fT_0 } \right)\left( {1 - {\rm{j2\pi }}fT_0 } \right)}} = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}fT_0 } \right)^2 }.$$
  
:Bei der angegebenen Frequenz ist <i>&Phi;<sub>y</sub></i>(<i>f</i>) gegenüber seinem Maximum um die Hälfte abgefallen:
+
Bei der angegebenen Frequenz $f = 1/(2\pi T_0)$ ist ${\it \Phi}_y (f)gegenüber seinem Maximum bei $f=0$ um die Hälfte abgefallen:
 
:$${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$
 
:$${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$
  

Version vom 18. April 2017, 16:14 Uhr

Anordnung zur Bestimmung des Frequenzgangs

Wir betrachten die abgebildete Messanordnung zur Bestimmung des blau hervorgehobenen Frequenzgangs $H(f)$.

  • Das Eingangssignal $x(t)$ ist weißes Gaußsches Rauschen mit der Rauschleistungsdichte $N_0 = 10^{-10} \hspace{0.05cm} \rm W/Hz$.


Somit gilt für die AKF:

$$\varphi _x ( \tau ) = {N_0 }/{2} \cdot \delta ( \tau ).$$
  • Die gemessene Kreuzkorrelationsfunktion (KKF) zwischen den Signalen $x(t)$ und $y(t)$ kann mit $K = 0.628 \cdot 10^{-12} \hspace{0.05cm} \rm W$ und $T = 1 \hspace{0.05cm} \rm ms$ wie folgt angenähert werden (nur gültig für positive Zeiten $t$):
$$\varphi _{xy} \left( \tau \right) = K \cdot {\rm{e}}^{ - \tau /T_0 } .$$
  • Gemessen wird außerdem die AKF $\varphi_y(\tau)$ des Ausgangssignals $y(t)$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Stochastische Systemtheorie.
  • Bezug genommen wird auch auf das Kapitel Leistungsdichtespektrum.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Beachten Sie bitte auch die folgende Fouriertransformation (in $\omega$):
$$H( \omega ) = \frac{1}{{1 + {\rm{j}}\cdot \omega /\omega _0 }}\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\,\hspace{0.15cm}h(t) = \omega _0 \cdot {\rm{e}}^{ - \omega _0 t} \hspace{0.3cm}(t \ge 0).$$
Für negative t-Werte ist dagegen stets $h(t) =0$.


Fragebogen

1

Welche der folgenden Aussagen treffen zu? Man kann den Frequenzgang $H(f)$ nach Betrag und Phase vollständig bestimmen, wenn:

die Funktionen $\varphi_x(\tau)$ und $\varphi_y(\tau)$ bekannt sind,
die Funktionen $\varphi_x(\tau)$ und $\varphi_{xy}(\tau)$ bekannt sind,
die Funktionen $\varphi_{xy}(\tau)$ und $\varphi_y(\tau)$ bekannt sind.

2

Berechnen Sie die Impulsantwort $h(t)$. Welcher Wert ergibt sich für $t=T_0$?

$h(t = T_0) \ = $

$\ \cdot 10^{-3} \ \rm 1/s$

3

Wie lautet der Frequenzgang $H(f)$? Welcher Wert ergibt sich für $f= 0$?

$H(f = 0) \ = $

4

Berechnen Sie das Leistungsdichtespektrum des Ausgangssignals $y(t)$. Welcher Wert ergibt sich bei der Frequenz $f = 1/(2\pi T_0)$?

${\it \Phi}_y(f = 1/(2\pi T_0)) \ = $

$\ \cdot 10^{-12}\ \rm W/Hz$


Musterlösung

(1)  Die Aussagen 2 und 3 sind zutreffend, da folgende Gleichungen gelten:

$$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$
$$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$
  • Dagegen ist die erste Aussage falsch: Bei der AKF-Berechnung gehen die Phasenbeziehungen verloren. Die zugehörigen Funktionen zu $\varphi_x(\tau)$ und $\varphi_x(\tau)$ im Spektralbereich – nämlich ${\it \Phi}_x$ und ${\it \Phi}_y$ – sind rein reell, so dass nur der Betrag $|H(f)|$ angegeben werden kann.


(2)  Bei diracförmiger Eingangs-AKF $\varphi_x(\tau)$ ist die Impulsantwort $h(t)$ formgleich mit der KKF:

$$h(t) = \frac{{K \cdot {\rm{e}}^{ - t/T_0 } }}{N_0 /2} = 1.256 \cdot 10^{ - 2} \frac{1}{{\rm{s}}} \cdot {\rm{e}}^{ - t/T_0 } $$

$$\Rightarrow \hspace{0.3cm}h(t = T_0)\hspace{0.15cm}\underline{ = 4.62 \cdot 10^{-3}\ \rm 1/s}.$$

(3)  Die angegebene Fourierkorrespondenz lautet mit $T_0 = 1/\omega_0$ und der Konstanten $C= N_0/2 \cdot T_0/K$:

$$h(t) = \frac{C}{T_0 } \cdot {\rm{e}}^{ - t/T_0 }\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} H( \omega ) = \frac{C}{{1 + {\rm{j}}\omega T_0 }}.$$

Die Konstante ergibt sich zu $C = 0.08$. Mit $H(f) = 2 \pi \cdot H(\omega)$ folgt daraus:

$$H(f) = \frac{0.5}{1 + {\rm{j2\pi }}fT_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f= 0) \hspace{0.15cm}\underline{=2}.$$


(4)  Für das Ausgangs-LDS gilt im Allgemeinen bzw. speziell hier:

$${\it \Phi}_y (f) = {\it \Phi} _x (f) \cdot \left| {H(f)} \right|^2 = \frac{N_0 }{2} \cdot \frac{0.5^2 }{{\left( {1 + {\rm{j2\pi }}fT_0 } \right)\left( {1 - {\rm{j2\pi }}fT_0 } \right)}} = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}fT_0 } \right)^2 }.$$

Bei der angegebenen Frequenz $f = 1/(2\pi T_0)$ ist ${\it \Phi}_y (f)$ gegenüber seinem Maximum bei $f=0$ um die Hälfte abgefallen:

$${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$