Eigenschaften der Fourierreihendarstellung (Lernvideo): Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
=== Teil 1 === | === Teil 1 === | ||
− | Verdeutlicht wird die Fourierreihen-Approximation für ein periodisches, mittelwertfreies und gerades Zeitsignal. Ein solches führt nach der Fouriertransformation stets zu einem Linienspektrum. Der Abstand zweier Spektrallinien ist dabei gleich dem Kehrwert der Periodendauer $T_0$. Eingegangen wird auch auf die vereinfachte Forierkoeffizientenberechnung aufgrund von Symmetrieeigenschaften (Dauer 3:25). | + | Verdeutlicht wird die Fourierreihen-Approximation für ein periodisches, mittelwertfreies und gerades Zeitsignal $x(t)$. Ein solches führt nach der Fouriertransformation stets zu einem Linienspektrum $X(f)$. Der Abstand zweier Spektrallinien ist dabei gleich dem Kehrwert der Periodendauer $T_0$. Eingegangen wird auch auf die vereinfachte Forierkoeffizientenberechnung aufgrund von Symmetrieeigenschaften (Dauer 3:25). |
<lntmedia preload="none"> | <lntmedia preload="none"> |
Version vom 16. Mai 2017, 15:03 Uhr
Teil 1
Verdeutlicht wird die Fourierreihen-Approximation für ein periodisches, mittelwertfreies und gerades Zeitsignal $x(t)$. Ein solches führt nach der Fouriertransformation stets zu einem Linienspektrum $X(f)$. Der Abstand zweier Spektrallinien ist dabei gleich dem Kehrwert der Periodendauer $T_0$. Eingegangen wird auch auf die vereinfachte Forierkoeffizientenberechnung aufgrund von Symmetrieeigenschaften (Dauer 3:25).
Teil 2
Herausgearbeitet werden grundlegende Unterschiede zwischen Analogsignalen und Digitalsignalen am Beispiel von (analogen) Sprach- bzw. Musiksignalen und einem kurzen (digitalen) ASCII-Text (Dauer 3:27).
Dieses Lernvideo wurde 2005 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Günter Söder und Klaus Eichin Sprecher: Klaus Eichin Realisierung: Ji Li.
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.