Aufgaben:Aufgabe 2.1Z: ZSB-AM ohne/mit Träger: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID987__Mod_Z_2_1.png|right|]]
+
[[Datei:P_ID987__Mod_Z_2_1.png|right|frame|Die bei der Amplitudenmodulation beteiligten Signale]]
Die Grafik zeigt mit dem roten Kurvenverlauf einen Ausschnitt des Sendesignals$s(t) = q(t) · z(t)$ bei der Zweiseitenband–Amplitudenmodulation (abgekürzt mit ZSB-AM) ohne Träger. Die Dauer des Zeitausschnitts beträgt $200 μs$.
+
Die Grafik zeigt mit dem roten Kurvenverlauf einen Ausschnitt des Sendesignals $s(t) = q(t) · z(t)$ einer Zweiseitenband–Amplitudenmodulation (abgekürzt mit ZSB-AM) ohne Träger. Die Dauer des Zeitausschnitts beträgt $200$ μs.
  
Zusätzlich sind das Quellensignal (als blau–gestrichelte Kurve)
+
Zusätzlich sind in der Grafik eingetragen:
$$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})$$
+
*das Quellensignal (als blau–gestrichelte Kurve):
und das Trägersignal (grau–gepunkteter Verlauf)
+
:$$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N}),$$
$$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})$$
+
*das Trägersignal (grau–gepunkteter Verlauf):
in der nebenstehenden Grafik eingetragen.
+
:$$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})$$
  
Ab der Teilaufgabe d) wird die „ZSB–AM mit Träger” betrachtet. Dann gilt mit $A_T = 2 V$:
+
Ab der Teilaufgabe (4) wird die „ZSB–AM mit Träger” betrachtet. Dann gilt mit $A_{\rm T} = 2$ V:
$$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$
+
:$$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$
  
  
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil von [http://www.lntwww.de/Modulationsverfahren/Zweiseitenband-Amplitudenmodulation Kapitel 2.1].
+
''Hinweise:''  
 +
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|Zweiseitenband-Amplitudenmodulation]].
 +
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#Beschreibung_im_Zeitbereich|Beschreibung im Zeitbereich]] und [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#ZSB-Amplitudenmodulation_mit_Tr.C3.A4ger|ZSB-Amplitudenmodulation_mit_Träger]].
 +
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 +
 
 +
 
 +
'
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie die Phasenwerte von Quellen– und Trägersignal aus der Grafik.
+
{Ermitteln Sie aus der Grafik die Phasenwerte von Quellen– und Trägersignal.
 
|type="{}"}
 
|type="{}"}
$\phi_N$ = { 0 3% } $\text{Grad}$
+
$\phi_{\rm N} \ = \ $ { 0. } $\ \text{Grad}$
$\phi_T$ = { 0 3% } $\text{Grad}$
+
$\phi_{\rm T} \ = \ $ { 0. } $\ \text{Grad}$
  
{Wie lauten die Frequenzen von $q(t)$ und $z(t)$?
+
{Welche Frequenz $f_{\rm N}$ besitzt das Nachrichtensignal $q(t)$ und welche Frequenz $f_{\rm T}$ das Trägersignal $z(t)$?
 
|type="{}"}
 
|type="{}"}
$f_N$ = { 5 3% } $\text{KHz}$
+
$f_{\rm N} \ = \ $ { 5 3% } $\ \text{kHz}$
$f_T$  { 50 3% }  $\text{KHz}$
+
$f_{\rm T} \ = \ $  { 50 3% }  $\ \text{kHz}$
  
 
{Analysieren Sie die Nulldurchgänge von $s(t)$. Welche Aussagen treffen zu?
 
{Analysieren Sie die Nulldurchgänge von $s(t)$. Welche Aussagen treffen zu?
Zeile 34: Zeile 40:
 
+ Alle Nulldurchgänge von $z(t)$ bleiben in $s(t)$ erhalten.
 
+ Alle Nulldurchgänge von $z(t)$ bleiben in $s(t)$ erhalten.
 
+ Es gibt weitere Nullstellen, verursacht durch $q(t)$.
 
+ Es gibt weitere Nullstellen, verursacht durch $q(t)$.
- Es gilt $s(t) = a(t) · cos(ω_T · t)$ mit $a(t) = |q(t)|$.
+
- Es gilt $s(t) = a(t) · \cos(ω_T · t)$ mit $a(t) = |q(t)|$.
  
 
{Bestimmen Sie die Spektralfunktion $S(f)$ über die Faltung. Welche (positiven) Frequenzen $f_1$ und $f_2 > f_1$ sind im Signal enthalten?
 
{Bestimmen Sie die Spektralfunktion $S(f)$ über die Faltung. Welche (positiven) Frequenzen $f_1$ und $f_2 > f_1$ sind im Signal enthalten?
 
|type="{}"}
 
|type="{}"}
$f_1$= { 45 3% } $\text{KHz}$
+
$f_1 \ = \ $ { 45 3% } $\ \text{kHz}$
$f_2$ = { 55 3% }   $\text{KHz}$
+
$f_2\ = \ $ { 55 3% } $\ \text{kHz}$
  
{Es gelte nun $A_T = 2 V$. Wie groß ist der Modulationsgrad?
+
{Es gelte nun $A_{\rm T} = 2$ V. Wie groß ist der Modulationsgrad $m$?
 
|type="{}"}
 
|type="{}"}
$m$ = { 0.5 3% }  
+
$m \ = \ $ { 0.5 3% }  
  
{Welche der Aussagen treffen bei der „ZSB–AM mit Träger” und $A_T = 2 V$ zu?
+
{Welche der Aussagen treffen bei der „ZSB–AM mit Träger” und $A_{\rm T} = 2$ V zu?
 
|type="[]"}
 
|type="[]"}
+  $S(f)$ beinhaltet nun auch Diracfunktionen bei $±f_T$.
+
+  $S(f)$ beinhaltet nun auch Diracfunktionen bei $±f_{\rm T}$.
-  Die Gewichte dieser Diraclinien sind jeweils 2 V.
+
-  Die Gewichte dieser Diraclinien sind jeweils $2$ V.
 
+  $q(t)$ ist in der Hüllkurve von $s(t)$ zu erkennen.
 
+  $q(t)$ ist in der Hüllkurve von $s(t)$ zu erkennen.
 
-  Durch den zusätzlichen Trägeranteil bleibt die Leistung unverändert.
 
-  Durch den zusätzlichen Trägeranteil bleibt die Leistung unverändert.

Version vom 22. Juni 2017, 13:09 Uhr

Die bei der Amplitudenmodulation beteiligten Signale

Die Grafik zeigt mit dem roten Kurvenverlauf einen Ausschnitt des Sendesignals $s(t) = q(t) · z(t)$ einer Zweiseitenband–Amplitudenmodulation (abgekürzt mit ZSB-AM) ohne Träger. Die Dauer des Zeitausschnitts beträgt $200$ μs.

Zusätzlich sind in der Grafik eingetragen:

  • das Quellensignal (als blau–gestrichelte Kurve):
$$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N}),$$
  • das Trägersignal (grau–gepunkteter Verlauf):
$$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})$$

Ab der Teilaufgabe (4) wird die „ZSB–AM mit Träger” betrachtet. Dann gilt mit $A_{\rm T} = 2$ V:

$$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$


Hinweise:


'

Fragebogen

1

Ermitteln Sie aus der Grafik die Phasenwerte von Quellen– und Trägersignal.

$\phi_{\rm N} \ = \ $

$\ \text{Grad}$
$\phi_{\rm T} \ = \ $

$\ \text{Grad}$

2

Welche Frequenz $f_{\rm N}$ besitzt das Nachrichtensignal $q(t)$ und welche Frequenz $f_{\rm T}$ das Trägersignal $z(t)$?

$f_{\rm N} \ = \ $

$\ \text{kHz}$
$f_{\rm T} \ = \ $

$\ \text{kHz}$

3

Analysieren Sie die Nulldurchgänge von $s(t)$. Welche Aussagen treffen zu?

Alle Nulldurchgänge von $z(t)$ bleiben in $s(t)$ erhalten.
Es gibt weitere Nullstellen, verursacht durch $q(t)$.
Es gilt $s(t) = a(t) · \cos(ω_T · t)$ mit $a(t) = |q(t)|$.

4

Bestimmen Sie die Spektralfunktion $S(f)$ über die Faltung. Welche (positiven) Frequenzen $f_1$ und $f_2 > f_1$ sind im Signal enthalten?

$f_1 \ = \ $

$\ \text{kHz}$
$f_2\ = \ $

$\ \text{kHz}$

5

Es gelte nun $A_{\rm T} = 2$ V. Wie groß ist der Modulationsgrad $m$?

$m \ = \ $

6

Welche der Aussagen treffen bei der „ZSB–AM mit Träger” und $A_{\rm T} = 2$ V zu?

$S(f)$ beinhaltet nun auch Diracfunktionen bei $±f_{\rm T}$.
Die Gewichte dieser Diraclinien sind jeweils $2$ V.
$q(t)$ ist in der Hüllkurve von $s(t)$ zu erkennen.
Durch den zusätzlichen Trägeranteil bleibt die Leistung unverändert.


Musterlösung

1. Beide Signale sind cosinusförmig: $ϕ_N = 0$, $ϕ_T = 0$.


2.Aus der Grafik können für $q(t)$ und $z(t)$ die Periodendauern $200 μs$ bzw. $20 μs$ abgelesen werden. Daraus ergeben sich die Frequenzen zu $f_N = 5 kHz$ und $f_T = 50 kHz$.


3. Die Nullstellen von $z(t)$ bei $±5 μs$, $±15 μs$, $±25 μs$, usw. sind auch im Signal $s(t)$ vorhanden. Weitere Nullstellen von $s(t)$ - verursacht durch $q(t)$ – liegen bei $±50 μs$, $±150 μs$, $±250 μs$, usw.. Richtig sind somit die Aussagen 1 und 2. Die dritte Aussage trifft dagegen nicht zu, sondern es gilt: $$ s(t) = a(t) \cdot \cos(\omega_{\rm T} t + \phi (t)) \hspace{0.05cm}.$$ Für $q(t) > 0$ ist die Phasenfunktion $ϕ(t) = 0$ und $s(t)$ ist gleichlaufend mit $z(t)$. Dagegen gilt für $q(t) < 0$: $ϕ(t) = π = 180°$. Bei den Nulldurchgängen von $q(t)$ weist das modulierte Signal $s(t)$ Phasensprünge auf.


4.Das Spektrum $S(f)$ ergibt sich aus der Faltung der Spektralfunktionen $Z(f)$ und $Q(f)$, die jeweils aus nur zwei Diracfunktionen bestehen. Die Grafik zeigt das Ergebnis.

P ID988 Mod Z 2 1 d.png

Die rot eingezeichneten Diracfunktionen gelten nur für die „ZSB–AM mit Träger” und beziehen sich auf die Teilaufgabe f). Die Faltung der beiden $Z(f)$–Diracfunktionen bei $f_T = 50 kHz$ mit $Q(f)$ führt zu den Diraclinien bei $f_T – f_N$ und $f_T + f_N$, jeweils mit Gewicht 0.5 · 0.5 V = 0.25 V.

Die gesuchten Werte sind somit $f_1 = 45 kHz$ und $f_2 = 55 kHz$. Die mit zwei Markierungsstrichen versehene Diracfunktion $0.5 · δ(f + f_T)$ führt zu zwei weiteren Diraclinien bei $–f_1$ und $–f_2$.


5.Der Modulationsgrad berechnet sich zu: $$ m = \frac{q_{\rm max}}{A_{\rm T}} = \frac{A_{\rm N}}{A_{\rm T}} \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$

6.Gemäß der Skizze bei d) ergeben sich Diraclinien bei $±f_T$, beide mit dem Impulsgewicht $A_T/2 = 1 V$. Bei m ≤ 1 ist $q(t)$ in der Hüllkurve erkennbar und Hüllkurvendemodulation anwendbar. Allerdings muss diese einfachere Empfängervariante durch eine sehr viel größere Sendeleistung erkauft werden. In diesem Beispiel (m = 0.5) wird die Sendeleistung durch den Trägerzusatz verneunfacht. Richtig sind demzufolge die Lösungsvorschläge 1 und 3.