Aufgaben:Aufgabe 2.2Z: Leistungsbetrachtung: Unterschied zwischen den Versionen
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID991__Mod_Z_2_2.png|right|]] | + | [[Datei:P_ID991__Mod_Z_2_2.png|right|frame|Linienspektrum des analytischen Signals]] |
Wir betrachten zwei harmonische Schwingungen | Wir betrachten zwei harmonische Schwingungen | ||
− | $$ s_1(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$ | + | :$$ s_1(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$ |
− | $$s_2(t) = A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$ | + | :$$s_2(t) = A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$ |
− | wobei für die Frequenzen $f_2 ≥ f_1$ gelten soll | + | wobei für die Frequenzen $f_2 ≥ f_1$ gelten soll. |
+ | Die Grafik zeigt das Spektrum des analytischen Signals $s_+(t)$, das sich additiv aus den beiden Anteilen $s_{1+}(t)$ und $s_ {2+}(t)$ zusammensetzt. | ||
− | Unter der Sendeleistung $ | + | Unter der Sendeleistung $P_{\rm S}$ soll hier der quadratische Mittelwert des Signals $s(t)$ verstanden werden, gemittelt über eine möglichst große Messdauer: |
− | $$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$ | + | :$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$ |
− | Beschreibt $s(t)$ einen Spannungsverlauf, so besitzt $ | + | Beschreibt $s(t)$ einen Spannungsverlauf, so besitzt $P_{\rm S}$ nach dieser Definition die Einheit $\rm V^2$ und bezieht sich auf den Widerstand $R = 1 \ \rm Ω$. Die Division durch $R$ liefert die physikalische Leistung in $\rm W$. |
− | |||
− | '' | + | ''Hinweise:'' |
− | + | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|Zweiseitenband-Amplitudenmodulation]]. | |
+ | *Bezug genommen wird auch auf das Kapitel [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]]. | ||
+ | *Verwenden Sie die Zahlenwerte $A_1 = 2\ \rm V$, $A_2 = 1 \ \rm V$ und $R = 50 \ \rm Ω$. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
Zeile 26: | Zeile 29: | ||
{Berechnen Sie die Leistung des Cosinussignals $s_1(t)$. | {Berechnen Sie die Leistung des Cosinussignals $s_1(t)$. | ||
|type="{}"} | |type="{}"} | ||
− | $P_1$ | + | $P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$ |
− | {Wie groß ist die physikalische Leistung des Signals | + | {Es gelte $R = 50 \ \rm Ω$. Wie groß ist die physikalische Leistung des Signals $s_1(t)$? |
|type="{}"} | |type="{}"} | ||
− | $P_1$ | + | $P_1 \ = \ $ { 40 3% } $\ \text{mW}$ |
− | {Wie groß ist die Leistung | + | {Wie groß ist die Leistung der phasenverschobenen Schwingung $s_2(t)$? |
|type="{}"} | |type="{}"} | ||
− | $P_2$ | + | $P_2 \ = \ $ { 0.5 3% } $\ \rm V^{ 2 }$ |
{Wie groß ist die Leistung des Summensignals $s(t)$ unter der Bedingung $f_2 ≠ f_1$? | {Wie groß ist die Leistung des Summensignals $s(t)$ unter der Bedingung $f_2 ≠ f_1$? | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $P_{\rm S} \ = \ $ { 2.4 3% } $\ \rm V^{ 2 }$ |
− | {Welche Leistung erhält man für $f_2 = f_1$ mit $ϕ = 0$, $ϕ = | + | {Welche Leistung erhält man für $f_2 = f_1$ mit $ϕ = 0$, $ϕ = 90^\circ$ und $ϕ = 180^\circ$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $ϕ = 0\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $ { 4.5 3% }$\ \rm V^{ 2 }$ |
− | $ | + | $ϕ = 90^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $ { 2.5 3% } $\ \rm V^{ 2 }$ |
− | $ | + | $ϕ = 180^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $ { 0.5 3% } $\ \rm V^{ 2 }$ |
</quiz> | </quiz> | ||
Version vom 26. Juni 2017, 10:52 Uhr
Wir betrachten zwei harmonische Schwingungen
- $$ s_1(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$
- $$s_2(t) = A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$
wobei für die Frequenzen $f_2 ≥ f_1$ gelten soll.
Die Grafik zeigt das Spektrum des analytischen Signals $s_+(t)$, das sich additiv aus den beiden Anteilen $s_{1+}(t)$ und $s_ {2+}(t)$ zusammensetzt.
Unter der Sendeleistung $P_{\rm S}$ soll hier der quadratische Mittelwert des Signals $s(t)$ verstanden werden, gemittelt über eine möglichst große Messdauer:
- $$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
Beschreibt $s(t)$ einen Spannungsverlauf, so besitzt $P_{\rm S}$ nach dieser Definition die Einheit $\rm V^2$ und bezieht sich auf den Widerstand $R = 1 \ \rm Ω$. Die Division durch $R$ liefert die physikalische Leistung in $\rm W$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Zweiseitenband-Amplitudenmodulation.
- Bezug genommen wird auch auf das Kapitel Qualitätskriterien.
- Verwenden Sie die Zahlenwerte $A_1 = 2\ \rm V$, $A_2 = 1 \ \rm V$ und $R = 50 \ \rm Ω$.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
2.Mit R = 50 Ω erhält man für die „unnormierte” Leistung: $$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$
3. Bereits in der Musterlösung zu a) wurde gezeigt, dass die Phase keinen Einfluss auf die Leistung hat. Daraus folgt: $$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
4. Zur Leistungsberechnung muss über $s^{2}(t)$ gemittelt werden, wobei gilt: $$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$ Aufgrund der Division durch die Messdauer $T_M$ und des erforderlichen Grenzübergangs liefert der letzte Term unabhängig von der Phase $ϕ$ keinen Beitrag und man erhält: $$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
5.Mit $f_2 = f_1$ lautet das Spektrum des analytischen Signals: $$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$ Somit ergibt sich das Signal $$s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},$$ dessen Phase $ϕ_3$ für die Leistungsberechnung keine Rolle spielt. Die Amplitude dieses Signals ist $$A_3 = \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} =$$ $$ = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$ Für $ϕ = 0$ addieren sich die Amplituden skalar: $$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$ Dagegen addieren sich die Amplituden für $ϕ = 90°$ vektoriell: $$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$ In diesem Sonderfall erhält man das gleiche Ergebnis wie in der Teilaufgabe d). Für $ϕ = 180°$ überlagern sich die Cosinusschwingungen destruktiv: $$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$