Aufgaben:Aufgabe 2.11Z: Nochmals ESB-AM & Hüllkurvendemodulation: Unterschied zwischen den Versionen
Zeile 28: | Zeile 28: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Geben Sie das äquivalente TP–Signal in analytischer Form an und beantworten Sie folgende Fragen. | + | {Geben Sie das äquivalente TP–Signal $s_{\rm TP}(t)$ in analytischer Form an und beantworten Sie folgende Fragen. |
|type="[]"} | |type="[]"} | ||
- Es handelt sich um eine OSB–AM. | - Es handelt sich um eine OSB–AM. | ||
Zeile 35: | Zeile 35: | ||
+ Das Nachrichtensignal $q(t)$ ist sinusförmig. | + Das Nachrichtensignal $q(t)$ ist sinusförmig. | ||
− | {Geben Sie die Amplitude und Frequenz des Quellensignals an. Berücksichtigen Sie, dass es sich um eine ESB–AM handelt. | + | {Geben Sie die Amplitude $A_{\rm N}$ und Frequenz $f_{\rm N}$ des Quellensignals an. Berücksichtigen Sie, dass es sich um eine ESB–AM handelt. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $A_{\rm N} \ = \ $ { 2 3% } $\ \rm V$ |
− | $ | + | $f_{\rm N} \ = \ $ { 5 3% } $\ \rm kHz$ |
− | {Welcher Wert ergibt sich für das | + | {Welcher Wert ergibt sich für das Seitenband–zu–Träger–Verhältnis $μ$? Verwenden Sie diese Größe zur Beschreibung von $s_{\rm TP}(t)$. |
|type="{}"} | |type="{}"} | ||
− | $μ$ | + | $μ \ = \ $ { 1 3% } |
− | {Berechnen Sie den zeitlichen Verlauf der Hüllkurve $a(t)$. Welche Werte treten bei $t = 50 μs$, $t = 100 μs$ und $t = 150 μs$ auf? | + | {Berechnen Sie den zeitlichen Verlauf der Hüllkurve $a(t)$. Welche Werte treten bei $t = 50 \ \rm μs$, $t = 100 \ \rm μs$ und $t = 150 \ \rm μs$ auf? |
|type="{}"} | |type="{}"} | ||
− | $a(t = 50 μs)$ | + | $a(t = 50 \ \rm μs) \hspace{0.32cm} = \ $ { 2 3% } $\ \rm V$ |
− | $a(t = 100 μs)$ | + | $a(t = 100 \ \rm μs) \ = \ $ { 1.414 3% } $\ \rm V$ |
− | $a(t = 150 μs)$ | + | $a(t = 150 \ \rm μs) \ = \ $ { 0. } $\ \rm V$ |
− | {Um welche Zeitdifferenz | + | {Um welche Zeitdifferenz $τ_{\rm max}$ (betragsmäßig) sind die Nulldurchgänge von $s(t)$ gegenüber $z(t)$ maximal verschoben? |
|type="{}"} | |type="{}"} | ||
− | $τ_{max}$ | + | $τ_{\rm max} \ = \ $ { 2.5 3% } $\ \rm μs$ |
</quiz> | </quiz> | ||
Version vom 3. Juli 2017, 16:45 Uhr
Nebenstehende Grafik zeigt die Ortskurve – also die Darstellung des äquivalenten Tiefpass–Signals in der komplexen Ebene – für ein ESB–AM–System.
Weiter ist bekannt, dass die Trägerfrequenz $f_{\rm T} = 100 \ \rm kHz$ beträgt und dass der Kanal ideal ist:
- $$ r(t) = s(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} r_{\rm TP}(t) = s_{\rm TP}(t) \hspace{0.05cm}.$$
Beim Empfänger wird ein idealer Hüllkurvendemodulator (HKD) eingesetzt. Im Verlauf dieser Aufgabe werden folgende Größen benutzt:
- das Seitenband–zu–Träger–Verhältnis
- $$\mu = \frac{A_{\rm N}/2}{A_{\rm T}}\hspace{0.05cm},$$
- die Hüllkurve
- $$a(t) = |s_{\rm TP}(t)| \hspace{0.05cm},$$
- die maximale Abweichung $τ_{\rm max}$ der Nulldurchgänge zwischen Sendesignal $s(t)$ und Trägersignal $z(t)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einseitenbandmodulation.
- Bezug genommen wird insbesondere auf die Seite Seitenband-zu-Träger-Verhältnis.
- Für diese Aufgabe gelten vergleichbare Voraussetzungen wie für die Aufgabe 2.11.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
2. Bei der USB wird nur das untere Seitenband mit der Zeigerlänge $A_N/2 = 1 V$ übertragen. Daraus ergibt sich $A_N = 2 V$. Für eine Umdrehung in der Ortskurve benötigt der Zeiger die Zeit $200 μs$. Der Kehrwert hiervon ist die Frequenz $f_N = 5 kHz$.
3. Entsprechend der Definition auf der Angabenseite und den Ergebnissen zu a) und b) gilt:
$$ \mu = \frac{A_{\rm N}/2}{A_{\rm T}}=1\hspace{0.05cm}.$$
Damit kann für das äquivalente TP–Signal auch geschrieben werden:
$$s_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + {\rm j} \cdot \mu \cdot {\rm e}^{-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \right),\hspace{0.3cm}{\rm hier}\hspace{0.15cm}\mu \hspace{0.15cm}\underline {= 1} \hspace{0.05cm}.$$
4.Spaltet man die komplexe Exponentialfunktion mit dem Satz von Euler nach Real– und Imaginärteil auf, so erhält man:
$$s_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + \sin(\omega_{\rm N}\cdot t) + {\rm j} \cos(\omega_{\rm N}\cdot t)\right) \hspace{0.05cm}.$$
Durch Anwendung des Satzes von Pythagoras kann hierfür auch geschrieben werden: $$a(t) = |s_{\rm TP}(t)| = A_{\rm T} \cdot \sqrt{ (1 + \sin(\omega_{\rm N}\cdot t))^2 + \cos^2(\omega_{\rm N}\cdot t)} =$$ $$ = |s_{\rm TP}(t)| = A_{\rm T} \cdot \sqrt{ 2 + 2 \cdot \sin(2\omega_{\rm N}\cdot t)} \hspace{0.05cm}.$$ Die abgefragten Werte lauten mit $A_T = 1 V$: $$ a(t = 50\,{\rm \mu s}) \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.3cm}a(t = 100\,{\rm \mu s}) \hspace{0.15cm}\underline {= 1.414\,{\rm V}},\hspace{0.3cm}a(t = 150\,{\rm \mu s}) \hspace{0.15cm}\underline {= 0} \hspace{0.05cm}.$$ Diese Ergebnisse können auch direkt aus der Grafik auf der Angabenseite abgelesen werden. 5.Ein Hinweis für die Lage der Nulldurchgänge von $s(t)$ gegenüber dem durch das Trägersignal $z(t)$ vorgegebenen Raster liefert die Phasenfunktion $ϕ(t)$. Bei der gegebenen Ortskurve können diese Werte zwischen $±π/2 (±90°)$ annehmen. Diese Maximalwerte treten zum Beispiel im Bereich um $t ≈ 150 μs$ auf, da hier ein Phasensprung stattfindet. Der Zusammenhang zwischen $τ_{max}$ und $ϕ_{max}$ lautet: $$ \tau_{\rm max} = \frac {\Delta \phi_{\rm max}}{2 \pi }\cdot \frac{1 }{f_{\rm T}} = \frac {1}{4}\cdot 10\,{\rm \mu s} \hspace{0.15cm}\underline {= 2.5\,{\rm \mu s}} \hspace{0.05cm}.$$