Aufgaben:Aufgabe 5.4Z: OVSF–Codes: Unterschied zwischen den Versionen
Safwen (Diskussion | Beiträge) |
|||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID1891__Mod_Z_5_4.png|right|]] | + | [[Datei:P_ID1891__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion eines OVSF–Codes]] |
− | Die Spreizcodes für UMTS sollen | + | Die Spreizcodes für [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS|UMTS]] sollen |
− | + | * alle zueinander orthogonal sein, um eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden, | |
− | + | * zusätzlich eine flexible Realisierung unterschiedlicher Spreizfaktoren J ermöglichen. | |
− | Ein Beispiel hierfür sind die | + | Ein Beispiel hierfür sind die so genannten [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29|Codes mit variablem Spreizfaktor]] (englisch: ''Orthogonal Variable Spreading'' Factor, OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $+C \ +C$ und $+C \ -C$. |
− | |||
− | |||
− | |||
− | |||
− | Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor J = 4 verwendet werden oder die drei gelb hinterlegten Codes – einmal mit J = 2 und zweimal mit J = 4. | + | Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J -1$ durch, so ergeben sich hier die Spreizfolgen |
+ | :$$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ | ||
+ | :$$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$ | ||
+ | Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle $, ... , $\langle c_\nu^{(7)}\rangle $. | ||
+ | |||
+ | Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$. | ||
+ | |||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Spreizfolgen_für_CDMA|Spreizfolgen für CDMA]]. | ||
+ | *Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29 |Walsh–Funktionen]] im Theorieteil. | ||
+ | * Wir möchten Sie gerne auch auf das Interaktionsmodul [[Walsh-Funktionen]] hinweisen. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | *Die Abszisse ist auf die Chipdauer $T_c$ normiert. Das bedeutet, dass $λ = 1$ eigentlich eine Verschiebung um die Verzögerungszeit $τ = T_c$ beschreibt. | ||
'''Hinweis:''' Die Aufgabe bezieht sich auf dem [http://www.lntwww.de/Modulationsverfahren/Spreizfolgen_f%C3%BCr_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29 Codes mit variablem Spreizfaktor (OVSF–Code)] von [http://www.lntwww.de/Modulationsverfahren/Spreizfolgen_f%C3%BCr_CDMA Kapitel 5.3]. | '''Hinweis:''' Die Aufgabe bezieht sich auf dem [http://www.lntwww.de/Modulationsverfahren/Spreizfolgen_f%C3%BCr_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29 Codes mit variablem Spreizfaktor (OVSF–Code)] von [http://www.lntwww.de/Modulationsverfahren/Spreizfolgen_f%C3%BCr_CDMA Kapitel 5.3]. |
Version vom 2. August 2017, 13:07 Uhr
Die Spreizcodes für UMTS sollen
- alle zueinander orthogonal sein, um eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
- zusätzlich eine flexible Realisierung unterschiedlicher Spreizfaktoren J ermöglichen.
Ein Beispiel hierfür sind die so genannten Codes mit variablem Spreizfaktor (englisch: Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $+C \ +C$ und $+C \ -C$.
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J -1$ durch, so ergeben sich hier die Spreizfolgen
- $$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle $, ... , $\langle c_\nu^{(7)}\rangle $.
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Spreizfolgen für CDMA.
- Bezug genommen wird insbesondere auf den Abschnitt Walsh–Funktionen im Theorieteil.
- Wir möchten Sie gerne auch auf das Interaktionsmodul Walsh-Funktionen hinweisen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Die Abszisse ist auf die Chipdauer $T_c$ normiert. Das bedeutet, dass $λ = 1$ eigentlich eine Verschiebung um die Verzögerungszeit $τ = T_c$ beschreibt.
Hinweis: Die Aufgabe bezieht sich auf dem Codes mit variablem Spreizfaktor (OVSF–Code) von Kapitel 5.3.
Fragebogen
Musterlösung
2. Wird jedem Nutzer ein Spreizcode mit J = 8 zugewiesen, so können $K_{max} = 8$ Teilnehmer versorgt werden.
3. Wenn drei Teilnehmer mit J = 4 versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit J = 8 bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) ⇒ K = 5.
4. Wir bezeichnen mit
- $K_4 = 2$ die Anzahl der Spreizfolgen mit J = 4,
- $K_8 = 1$ die Anzahl der Spreizfolgen mit J = 8,
- $K_16 = 2$ die Anzahl der Spreizfolgen mit J = 16,
- $K_32 = 8$ die Anzahl der Spreizfolgen mit J = 32,
Dann muss folgende Bedingung erfüllt sein: $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32$$ $$\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ Wegen 2 · 8 + 1 · 4 + 2 · 2 + 8 = 32 ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA. Die zweimalige Bereitstellung des Spreizgrads J = 4 blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit J = 8, bleiben auf der J = 8–Ebene noch 3 der 8 Äste zu belegen, usw. und so fort.