Aufgaben:Aufgabe 5.4Z: OVSF–Codes: Unterschied zwischen den Versionen
Zeile 22: | Zeile 22: | ||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Spreizfolgen_für_CDMA|Spreizfolgen für CDMA]]. | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Spreizfolgen_für_CDMA|Spreizfolgen für CDMA]]. | ||
− | *Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29 | | + | *Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29 |Codes mit variablem Spreizfaktor]] im Theorieteil. |
− | * Wir möchten Sie gerne auch auf das Interaktionsmodul [[ | + | * Wir möchten Sie gerne auch auf das Interaktionsmodul [[OVSF]] hinweisen. |
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | |||
− | + | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Konstruieren Sie das Baumdiagramm für J = 8. Welche OVSF–Codes ergeben sich daraus? | + | {Konstruieren Sie das Baumdiagramm für $J = 8$. Welche OVSF–Codes ergeben sich daraus? |
|type="[]"} | |type="[]"} | ||
− | + | + | + $ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$ |
− | - | + | - $ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1}$ , |
− | + | + | + $ \langle c_\nu^{(5)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}$, |
− | + | + | + $ \langle c_\nu^{(7)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}$. |
− | {Wieviele UMTS–Teilnehmer können mit J = 8 maximal bedient werden? | + | {Wieviele UMTS–Teilnehmer $(K_{\rm max})$ können mit $J = 8$ maximal bedient werden? |
|type="{}"} | |type="{}"} | ||
− | $K_{max}$ | + | $K_{\rm max} \ = \ $ { 8 } |
− | {Wieviele Teilnehmer können versorgt werden, wenn drei dieser Teilnehmer einen Spreizcode mit J = 4 verwenden sollen? | + | {Wieviele Teilnehmer $(K)$ können versorgt werden, wenn drei dieser Teilnehmer einen Spreizcode mit $J = 4$ verwenden sollen? |
|type="{}"} | |type="{}"} | ||
− | $K$ | + | $K \ = \ $ { 3 } |
− | {Gehen Sie von einer Baumstruktur für J = 32 aus. Ist folgende Zuweisung machbar: Zweimal J = 4, einmal J = 8, zweimal J = 16 und achtmal J = 32? | + | {Gehen Sie von einer Baumstruktur für $J = 32$ aus. |
+ | <br>Ist die folgende Zuweisung machbar: Zweimal $J = 4$, einmal $J = 8$, zweimal $J = 16$ und achtmal $J = 32$? | ||
|type="[]"} | |type="[]"} | ||
+ ja | + ja |
Version vom 2. August 2017, 16:51 Uhr
Die Spreizcodes für UMTS sollen
- alle zueinander orthogonal sein, um eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
- zusätzlich eine flexible Realisierung unterschiedlicher Spreizfaktoren J ermöglichen.
Ein Beispiel hierfür sind die so genannten Codes mit variablem Spreizfaktor (englisch: Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $+C \ +C$ und $+C \ -C$.
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J -1$ durch, so ergeben sich hier die Spreizfolgen
- $$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle $, ... , $\langle c_\nu^{(7)}\rangle $.
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Spreizfolgen für CDMA.
- Bezug genommen wird insbesondere auf den Abschnitt Codes mit variablem Spreizfaktor im Theorieteil.
- Wir möchten Sie gerne auch auf das Interaktionsmodul OVSF hinweisen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
2. Wird jedem Nutzer ein Spreizcode mit J = 8 zugewiesen, so können $K_{max} = 8$ Teilnehmer versorgt werden.
3. Wenn drei Teilnehmer mit J = 4 versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit J = 8 bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) ⇒ K = 5.
4. Wir bezeichnen mit
- $K_4 = 2$ die Anzahl der Spreizfolgen mit J = 4,
- $K_8 = 1$ die Anzahl der Spreizfolgen mit J = 8,
- $K_16 = 2$ die Anzahl der Spreizfolgen mit J = 16,
- $K_32 = 8$ die Anzahl der Spreizfolgen mit J = 32,
Dann muss folgende Bedingung erfüllt sein: $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32$$ $$\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ Wegen 2 · 8 + 1 · 4 + 2 · 2 + 8 = 32 ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA. Die zweimalige Bereitstellung des Spreizgrads J = 4 blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit J = 8, bleiben auf der J = 8–Ebene noch 3 der 8 Äste zu belegen, usw. und so fort.