Applets:Periodendauer periodischer Signale: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 118: Zeile 118:
 
a = brd2.create('slider',[[-0.7,1.5],[3,1.5],[0,0.5,1]], {suffixlabel:' <I>A</I>_1=', unitLabel: 'V', snapWidth:0.01}),
 
a = brd2.create('slider',[[-0.7,1.5],[3,1.5],[0,0.5,1]], {suffixlabel:' <I>A</I>_1=', unitLabel: 'V', snapWidth:0.01}),
 
b = brd2.create('slider',[[-0.7,0.5],[3,0.5],[0,1,10]], {suffixlabel:'<I>f</I>_1=', unitLabel: 'kHz', snapWidth:0.1}),
 
b = brd2.create('slider',[[-0.7,0.5],[3,0.5],[0,1,10]], {suffixlabel:'<I>f</I>_1=', unitLabel: 'kHz', snapWidth:0.1}),
c = brd2.create('slider',[[-0.7,-0.5],[3,-0.5],[-180,0,180]], {suffixlabel:'<I>&straightphi;</I>_1=', unitLabel: 'Grad', snapWidth:5}),
+
c = brd2.create('slider',[[-0.7,-0.5],[3,-0.5],[-180,0,180]], {suffixlabel:'<I>&phi;</I>_1=', unitLabel: 'Grad', snapWidth:5}),
 
d = brd2.create('slider',[[6,1.5],[9.7,1.5],[0,0.5,1]], {suffixlabel:'<I>A</I>_2=', unitLabel: 'V', snapWidth:0.01}),
 
d = brd2.create('slider',[[6,1.5],[9.7,1.5],[0,0.5,1]], {suffixlabel:'<I>A</I>_2=', unitLabel: 'V', snapWidth:0.01}),
 
e = brd2.create('slider',[[6,0.5],[9.7,0.5],[0,2,10]], {suffixlabel:'<I>f</I>_2=', unitLabel: 'kHz', snapWidth:0.1}),
 
e = brd2.create('slider',[[6,0.5],[9.7,0.5],[0,2,10]], {suffixlabel:'<I>f</I>_2=', unitLabel: 'kHz', snapWidth:0.1}),
g = brd2.create('slider',[[6,-0.5],[9.7,-0.5],[-180,90,180]], {suffixlabel:'<I>&straightphi;</I>_2=',unitLabel: 'Grad', snapWidth:5}),
+
g = brd2.create('slider',[[6,-0.5],[9.7,-0.5],[-180,90,180]], {suffixlabel:'<I>&phi;</I>_2=',unitLabel: 'Grad', snapWidth:5}),
 
t = brd2.create('slider',[[-0.7,-1.5],[3,-1.5],[0,0,10]], {suffixlabel:'<I>t</I>=', snapWidth:0.2}),
 
t = brd2.create('slider',[[-0.7,-1.5],[3,-1.5],[0,0,10]], {suffixlabel:'<I>t</I>=', snapWidth:0.2}),
  

Version vom 9. September 2017, 20:53 Uhr

mit Gitter

\(x(t)=A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)\)
x(t)=
x(t+T0)=
x(t+2T0)=
xmax=
T0=