Applets:Periodendauer periodischer Signale: Unterschied zwischen den Versionen
Aus LNTwww
Tasnad (Diskussion | Beiträge) |
Tasnad (Diskussion | Beiträge) |
||
Zeile 9: | Zeile 9: | ||
<meta charset="utf-8" /> | <meta charset="utf-8" /> | ||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jsxgraph/0.99.6/jsxgraphcore.js"></script> | <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jsxgraph/0.99.6/jsxgraphcore.js"></script> | ||
+ | <!-- <script type="text/javascript" src="https://www.lntwww.de/MathJax/unpacked/MathJax.js?config=TeX-AMS-MML_HTMLorMML-full,local/mwMathJaxConfig"></script> --> | ||
<style> | <style> | ||
.button { | .button { | ||
Zeile 49: | Zeile 50: | ||
<table> | <table> | ||
<tr> | <tr> | ||
− | <td> | + | <td>$x(t)$= <span id="x(t)"></span> </td> |
− | <td> | + | <td>$x(t+ T_0)$=<span id="x(t+T_0)"></span> </td> |
− | <td> | + | <td>$x(t+2T_0)$=<span id="x(t+2T_0)"></span></td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td> | + | <td>$x_{\text{max}}$=<span id="x_max"></span></td> |
− | <td> | + | <td>$T_0$= <span id="T_0"></span> </td> |
</tr> | </tr> | ||
</table> | </table> | ||
Zeile 77: | Zeile 78: | ||
// Einstellungen der Achsen | // Einstellungen der Achsen | ||
xaxis = pltBox.create('axis', [[0, 0], [1, 0]], { | xaxis = pltBox.create('axis', [[0, 0], [1, 0]], { | ||
− | name: ' | + | name: '$\\dfrac{t}{T}$', |
withLabel: true, label: { position: 'rt', offset: [-25, -10] } | withLabel: true, label: { position: 'rt', offset: [-25, -10] } | ||
}); | }); | ||
yaxis = pltBox.create('axis', [[0, 0], [0, 1]], { | yaxis = pltBox.create('axis', [[0, 0], [0, 1]], { | ||
− | name: ' | + | name: '$x(t)$', |
withLabel: true, label: { position: 'rt', offset: [10, -5] } | withLabel: true, label: { position: 'rt', offset: [10, -5] } | ||
}); | }); | ||
Zeile 87: | Zeile 88: | ||
// Erstellen der Schieberegler | // Erstellen der Schieberegler | ||
a = cnfBox.create('slider', [ [-0.7, 1.5], [3, 1.5], [0, 0.5, 1] ], { | a = cnfBox.create('slider', [ [-0.7, 1.5], [3, 1.5], [0, 0.5, 1] ], { | ||
− | suffixlabel: ' | + | suffixlabel: '$A_1=$', |
unitLabel: 'V', snapWidth: 0.01 | unitLabel: 'V', snapWidth: 0.01 | ||
}), | }), | ||
b = cnfBox.create('slider', [ [-0.7, 0.5], [3, 0.5], [0, 1, 10] ], { | b = cnfBox.create('slider', [ [-0.7, 0.5], [3, 0.5], [0, 1, 10] ], { | ||
− | suffixlabel: ' | + | suffixlabel: '$f_1=$', |
unitLabel: 'kHz', snapWidth: 0.1 | unitLabel: 'kHz', snapWidth: 0.1 | ||
}), | }), | ||
c = cnfBox.create('slider', [ [-0.7, -0.5], [3, -0.5], [-180, 0, 180] ], { | c = cnfBox.create('slider', [ [-0.7, -0.5], [3, -0.5], [-180, 0, 180] ], { | ||
− | suffixlabel: ' | + | suffixlabel: '$\\phi_1=$', |
unitLabel: 'Grad', snapWidth: 5 | unitLabel: 'Grad', snapWidth: 5 | ||
}), | }), | ||
d = cnfBox.create('slider', [ [6, 1.5], [9.7, 1.5], [0, 0.5, 1] ], { | d = cnfBox.create('slider', [ [6, 1.5], [9.7, 1.5], [0, 0.5, 1] ], { | ||
− | suffixlabel: ' | + | suffixlabel: '$A_2=$', |
unitLabel: 'V', snapWidth: 0.01 | unitLabel: 'V', snapWidth: 0.01 | ||
}), | }), | ||
e = cnfBox.create('slider', [ [6, 0.5], [9.7, 0.5], [0, 2, 10] ], { | e = cnfBox.create('slider', [ [6, 0.5], [9.7, 0.5], [0, 2, 10] ], { | ||
− | suffixlabel: ' | + | suffixlabel: '$f_2=$', |
unitLabel: 'kHz', snapWidth: 0.1 | unitLabel: 'kHz', snapWidth: 0.1 | ||
}), | }), | ||
g = cnfBox.create('slider', [ [6, -0.5], [9.7, -0.5], [-180, 90, 180] ], { | g = cnfBox.create('slider', [ [6, -0.5], [9.7, -0.5], [-180, 90, 180] ], { | ||
− | suffixlabel: ' | + | suffixlabel: '$\\phi_2=$', |
unitLabel: 'Grad', snapWidth: 5 | unitLabel: 'Grad', snapWidth: 5 | ||
}), | }), | ||
t = cnfBox.create('slider', [ [-0.7, -1.5], [3, -1.5], [0, 0, 10] ], { | t = cnfBox.create('slider', [ [-0.7, -1.5], [3, -1.5], [0, 0, 10] ], { | ||
− | suffixlabel: ' | + | suffixlabel: '$t=$', |
unitLabel: 's', snapWidth: 0.2 | unitLabel: 's', snapWidth: 0.2 | ||
}), | }), |
Version vom 12. September 2017, 18:16 Uhr
$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$
$x(t)$= | $x(t+ T_0)$= | $x(t+2T_0)$= |
$x_{\text{max}}$= | $T_0$= |