Applets:Periodendauer periodischer Signale: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 35: Zeile 35:
  
  
<body onload="drawNow()">
+
 
 
<!-- Resetbutton, Checkbox und Formel -->
 
<!-- Resetbutton, Checkbox und Formel -->
 
<p>
 
<p>
Zeile 43: Zeile 43:
 
<div id="plotBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:170px 20px 0px 0px;"></div>
 
<div id="plotBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:170px 20px 0px 0px;"></div>
 
<div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; margin:-760px 20px 0px 0px;"></div>
 
<div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; margin:-760px 20px 0px 0px;"></div>
<div id="outBoxHtml" class="jxgbox" style="width:600px; height:100px; margin:625px 20px 0px 0px;"></div>
+
 
 +
<!-- Ausgabefelder -->
 +
<table>
 +
    <tr>
 +
        <td>$x(t)$=    <span id="x(t)"></span>    </td>
 +
        <td>$x(t+ T_0)$=<span id="x(t+T_0)"></span> </td>
 +
        <td>$x(t+2T_0)$=<span id="x(t+2T_0)"></span></td>
 +
    </tr>
 +
    <tr>
 +
        <td>$x_{\text{max}}$=<span id="x_max"></span></td>
 +
        <td>$T_0$=          <span id="T_0"></span>  </td>
 +
    </tr>
 +
</table>
 +
 
 +
 
  
 
<script type="text/javascript">
 
<script type="text/javascript">
function drawNow() {
+
 
 
//Grundeinstellungen der beiden Applets
 
//Grundeinstellungen der beiden Applets
 
JXG.Options.text.useMathJax = true;
 
JXG.Options.text.useMathJax = true;
Zeile 109: Zeile 123:
 
p_T0h = plotBox.create('point', [function(){ return Math.round(getT0() *100)/100;}, 2], {visible: false, color:"blue", fixed:true, label:false, size:1, name:''})
 
p_T0h = plotBox.create('point', [function(){ return Math.round(getT0() *100)/100;}, 2], {visible: false, color:"blue", fixed:true, label:false, size:1, name:''})
 
l_T0 = plotBox.create('line', [p_T0, p_T0h])
 
l_T0 = plotBox.create('line', [p_T0, p_T0h])
};
+
 
  
 
//Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
 
//Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth

Version vom 18. September 2017, 08:41 Uhr

Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$

$x(t)$= $x(t+ T_0)$= $x(t+2T_0)$=
$x_{\text{max}}$= $T_0$=