Applets:Periodendauer periodischer Signale: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 1: | Zeile 1: | ||
− | |||
− | |||
<p> | <p> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$ | + | <B style="font-size:18px">Funktion:</B> |
+ | $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$ | ||
}} | }} | ||
</p> | </p> | ||
Zeile 9: | Zeile 8: | ||
<html> | <html> | ||
<head> | <head> | ||
− | + | <meta charset="utf-8" /> | |
− | + | <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jsxgraph/0.99.6/jsxgraphcore.js"></script> | |
− | + | <!-- <script type="text/javascript" src="https://www.lntwww.de/MathJax/unpacked/MathJax.js?config=TeX-AMS-MML_HTMLorMML-full,local/mwMathJaxConfig"></script> --> | |
− | + | <!-- <script type="text/javascript" src="https://cdn.rawgit.com/mathjax/MathJax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML-full"></script> --> | |
+ | |||
+ | <style> | ||
.button { | .button { | ||
background-color: black; | background-color: black; | ||
Zeile 29: | Zeile 30: | ||
} | } | ||
− | + | </style> | |
− | |||
− | |||
− | |||
− | |||
</head> | </head> | ||
− | <body | + | <body onload="drawNow()"> |
− | + | <!-- Resetbutton, Checkbox und Formel --> | |
− | + | <p> | |
− | + | <input type="checkbox" id="gridbox" onclick="showgrid();" checked> <label for="gridbox">Gitterlinien zeigen</label> | |
− | + | <button class="button" onclick="drawNow();">Reset</button> | |
− | + | </p> | |
− | + | <div id="plotBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:170px 20px 0px 0px;"></div> | |
− | + | <div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; margin:-760px 20px 0px 0px;"></div> | |
− | + | <div id="outBoxHtml" class="jxgbox" style="width:600px; height:100px; margin:625px 20px 0px 0px;"></div> | |
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<script type="text/javascript"> | <script type="text/javascript"> | ||
− | + | function drawNow() { | |
− | + | //Grundeinstellungen der beiden Applets | |
− | + | JXG.Options.text.useMathJax = true; | |
− | + | plotBox = JXG.JSXGraph.initBoard('plotBoxHtml', {showCopyright:false, axis:false, zoom:{factorX:1.1, factorY:1.1, wheel:true, needshift:true, eps: 0.1}, grid:false, boundingbox: [-0.5, 2.2, 12.4, -2.2]}); | |
− | + | cnfBox = JXG.JSXGraph.initBoard('cnfBoxHtml', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]}); | |
− | + | var outBox = JXG.JSXGraph.initBoard('outBoxHtml', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]}); | |
− | + | cnfBox.addChild(plotBox); | |
− | + | cnfBox.addChild(outBox); | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | //Einstellungen der Achsen | |
− | + | xaxis = plotBox.create('axis', [[0, 0], [1,0]], {name:'\\[t/T\\]', withLabel:true, label:{position:'rt', offset:[-25, 15]}}); | |
− | + | yaxis = plotBox.create('axis', [[0, 0], [0, 1]], {name:'\\[x(t)\\]', withLabel:true, label:{position:'rt', offset:[10, -5]}}); | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | //Festlegen der Schieberegler | |
− | + | a = cnfBox.create('slider',[[-0.7,1.5],[3,1.5],[0,0.5,1]], {withLabel:false, withTicks:false, snapWidth:0.01}), | |
− | + | b = cnfBox.create('slider',[[-0.7,0.5],[3,0.5],[0,1,10]], {withLabel:false, withTicks:false, snapWidth:0.1}), | |
− | + | c = cnfBox.create('slider',[[-0.7,-0.5],[3,-0.5],[-180,0,180]], {withLabel:false, withTicks:false, snapWidth:5}), | |
− | + | d = cnfBox.create('slider',[[6,1.5],[9.7,1.5],[0,0.5,1]], {withLabel:false, withTicks:false, snapWidth:0.01}), | |
− | + | e = cnfBox.create('slider',[[6,0.5],[9.7,0.5],[0,2,10]], {withLabel:false, withTicks:false, snapWidth:0.1}), | |
− | + | g = cnfBox.create('slider',[[6,-0.5],[9.7,-0.5],[-180,90,180]], {withLabel:false, withTicks:false, snapWidth:5}), | |
− | + | t = cnfBox.create('slider',[[-0.7,-1.5],[3,-1.5],[0,0,10]], {withLabel:false, withTicks:false, snapWidth:0.2}), | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | //Definition der Ausgabefelder | |
− | + | texta=cnfBox.create('text',[2.8,1.87, function() | |
− | + | { return '\\[A_1= '+ Math.round(a.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true, fontSize:14}); | |
− | + | textb=cnfBox.create('text',[2.8,0.87, function() | |
− | + | { return '\\[f_1= '+ Math.round(b.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true, fontSize:14}); | |
− | + | textc=cnfBox.create('text',[2.8,-0.13, function() | |
+ | { return '\\[\\phi_1= '+ Math.round(c.Value()*100)/100 +' \\text{ Grad}\\]';}], {fixed:true, visible:true, fontSize:14}); | ||
+ | textd=cnfBox.create('text',[9.5,1.67, function() | ||
+ | { return '\\[A_2= '+ Math.round(d.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true, fontSize:14}); | ||
+ | texte=cnfBox.create('text',[9.5,0.67, function() | ||
+ | { return '\\[f_2= '+ Math.round(e.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true, fontSize:14}); | ||
+ | textg=cnfBox.create('text',[9.5,-0.33, function() | ||
+ | { return '\\[\\phi_2= '+ Math.round(g.Value()*100)/100 +' \\text{ Grad}\\]';}], {fixed:true, visible:true, fontSize:14}); | ||
+ | textt=cnfBox.create('text',[2.8,-1.2, function() | ||
+ | { return '\\[t= '+ Math.round(t.Value()*100)/100 +' \\]';}], {fixed:true, visible:true, fontSize:14}); | ||
− | + | textergebnis1=outBox.create('text',[-1,1.5, function() | |
− | + | { return '\\[x(t)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*t.Value()-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*t.Value()-2*Math.PI*g.Value()/360))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14}); | |
− | + | textergebnis2=outBox.create('text',[1.5,1.5, function() | |
− | + | { return '\\[x(t+T_0)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14}); | |
− | + | textergebnis3=outBox.create('text',[5,1.5, function() | |
− | + | { return '\\[x(t+2T_0)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14}); | |
− | + | textergebnis4=outBox.create('text',[8.5,1.5, function() | |
− | + | {var x = new Array(50000); | |
− | + | for (var i = 0; i < 50001; i++) {x[i] = Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(i/1000)-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*(i/1000)-2*Math.PI*g.Value()/360)) *1000)/1000;}; | |
− | + | return '\\[x_{max}= '+ Math.max.apply(Math,x)+' \\]';}], {fixed:true, visible:true, fontSize:14}); | |
− | + | textergebnis5=outBox.create('text',[10.8,1.5, function() | |
− | + | { return '\\[T_0= '+ Math.round(getT0() *100)/100 +' \\]';}], {fixed:true, visible:true, strokeColor:'blue', fontSize:14}); | |
− | |||
− | |||
− | |||
− | |||
− | + | //Definition der Funktion | |
− | + | signaldarstellung = plotBox.create('functiongraph',[function(x){ | |
− | + | return (a.Value()*Math.cos(2*Math.PI*b.Value()*x-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*x-2*Math.PI*g.Value()/360)) | |
− | }, | + | }], {strokeColor: "red"}); |
+ | //Definition des Punktes p_T0, des Hilfspunktes p_T0h und der Geraden l_T0 für Periodendauer T_0 | ||
+ | p_T0=plotBox.create('point', [function(){ return Math.round(getT0() *100)/100;}, | ||
+ | function(){ return a.Value()*Math.cos(2*Math.PI*b.Value()*(Math.round(getT0() *100)/100)-2*Math.PI*c.Value()/360) | ||
+ | +d.Value()*Math.cos(2*Math.PI*e.Value()*(Math.round(getT0() *100)/100)-2*Math.PI*g.Value()/360);}], {color:"blue", fixed:true, label:false, size:1, name:''}) | ||
+ | p_T0h = plotBox.create('point', [function(){ return Math.round(getT0() *100)/100;}, 2], {visible: false, color:"blue", fixed:true, label:false, size:1, name:''}) | ||
+ | l_T0 = plotBox.create('line', [p_T0, p_T0h]) | ||
+ | }; | ||
+ | //Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth | ||
+ | function getT0() { | ||
− | |||
− | |||
− | |||
− | |||
− | |||
var A, B, C, Q; | var A, B, C, Q; | ||
if (b.Value() < e.Value()) { | if (b.Value() < e.Value()) { | ||
Zeile 162: | Zeile 121: | ||
A = e.Value(); | A = e.Value(); | ||
} | } | ||
− | + | ||
+ | console.log('Berechne T0 mit A=' + A, 'B=' + B); | ||
+ | |||
for (var x = 1; x <= 100; x++) { | for (var x = 1; x <= 100; x++) { | ||
C = A / x; | C = A / x; | ||
Q = B / C; | Q = B / C; | ||
− | + | console.log(x + '. Durchgang: C = ' + C, 'Q = ' + Q); | |
if (isInt(Q)) { | if (isInt(Q)) { | ||
− | + | console.log('Q ist eine Qanzzahl!!! T0 ist damit ', 1 / C); | |
return 1 / C; | return 1 / C; | ||
} | } | ||
Zeile 174: | Zeile 135: | ||
return 10; | return 10; | ||
} | } | ||
− | if ((1 / C) > 10) | + | if ((1/C) > 10) |
return 10 | return 10 | ||
} | } | ||
} | } | ||
+ | function isInt(n) { | ||
+ | return n % 1 === 0; | ||
+ | } | ||
− | + | //Definition der Funktion zum An- und Ausschalten des Koordinatengitters | |
− | + | function showgrid() { | |
− | + | if (gridbox.checked) { | |
− | + | xaxis = plotBox.create('axis', [[0, 0], [1,0]], {}); | |
− | + | yaxis = plotBox.create('axis', [[0, 0], [0, 1]], {}); | |
− | + | } else { | |
− | + | xaxis.removeTicks(xaxis.defaultTicks); | |
− | + | yaxis.removeTicks(yaxis.defaultTicks); | |
− | + | } | |
− | + | plotBox.fullUpdate(); | |
− | + | }; | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</script> | </script> | ||
</body> | </body> | ||
</html> | </html> | ||
− | |||
− |
Version vom 18. September 2017, 08:56 Uhr
Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$