Applets:Periodendauer periodischer Signale: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 13: | Zeile 13: | ||
<!-- <script type="text/javascript" src="https://cdn.rawgit.com/mathjax/MathJax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML-full"></script> --> | <!-- <script type="text/javascript" src="https://cdn.rawgit.com/mathjax/MathJax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML-full"></script> --> | ||
<style> | <style> | ||
− | + | .wrapper1{ | |
− | + | display:grid; | |
− | + | grid-row-gap:1em; | |
− | + | justify-items:stretch; | |
− | + | align-items:stretch; | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
} | } | ||
− | . | + | |
− | + | .wrapper1 >div{ | |
+ | padding:0em; | ||
+ | border: 1px solid black; | ||
} | } | ||
+ | .wrapper1 >div:nth-child(odd){ | ||
+ | } | ||
+ | .wrapper2{ | ||
+ | display:grid; | ||
+ | grid-row-gap:1em; | ||
+ | grid-template-columns:70% 30%; | ||
+ | justify-items:stretch; | ||
+ | align-items:stretch; | ||
+ | |||
+ | } | ||
+ | |||
+ | .wrapper2 >div{ | ||
+ | padding:0em; | ||
+ | border: 1px solid black; | ||
+ | grid-template-columns:repeat(2);} | ||
+ | |||
+ | |||
+ | .box4{ | ||
+ | grid-column:1/3; | ||
+ | grid-row:4/4; | ||
+ | border: 1px solid black; | ||
+ | } | ||
+ | .box5{ | ||
+ | grid-column:2/3; | ||
+ | grid-row:4/4; | ||
+ | border: 1px solid black; | ||
+ | } | ||
+ | |||
+ | .button { | ||
+ | background-color: black; | ||
+ | border: none; | ||
+ | color: white; | ||
+ | font-family: arial; | ||
+ | padding: 8px 20px; | ||
+ | text-align: center; | ||
+ | text-decoration: none; | ||
+ | display: inline-block; | ||
+ | font-size: 16px; | ||
+ | border-radius: 15px; | ||
+ | } | ||
+ | .button:active { | ||
+ | background-color: #939393; | ||
+ | } | ||
</style> | </style> | ||
</head> | </head> |
Version vom 18. September 2017, 22:12 Uhr
Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$
$x(t)$= $\quad$ | $x(t+ T_0)$= $\quad$ | $x(t+2T_0)$= $\quad$ | $x_{\text{max}}$= $\quad$ | $T_0$= $\quad$ |