Aufgaben:Aufgabe 3.3Z: Optimierung eines Koaxialkabelsystems: Unterschied zwischen den Versionen
Zeile 19: | Zeile 19: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '' | + | ''Hinweise:'' |
* Die Aufgabe gehört zum Themengebiet von [[Digitalsignal%C3%BCbertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung|Berücksichtigung von Kanalverzerrungen und Entzerrung]]. | * Die Aufgabe gehört zum Themengebiet von [[Digitalsignal%C3%BCbertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung|Berücksichtigung von Kanalverzerrungen und Entzerrung]]. | ||
* Zur numerischen Auswertung der Q–Funktion können Sie das folgende Interaktionsmodul nutzen: [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1706&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross|Komplementäre Gaußsche Fehlerfunktion] | * Zur numerischen Auswertung der Q–Funktion können Sie das folgende Interaktionsmodul nutzen: [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1706&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross|Komplementäre Gaußsche Fehlerfunktion] | ||
Zeile 47: | Zeile 47: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Für die Optimierung genügt es , den Quotienten $\ddot{o}( | + | '''(1)''' Für die Optimierung genügt es , den Quotienten $\ddot{o}(T_{\rm D})/\sigma_d$ zu maximieren. Dieser ist von den in der Tabelle gegebenen Werten für die Grenzfrequenz $f_{\rm G, opt} \cdot T = \underline {= 0.4}$ mit $0.735/0.197 \approx 3.73$ maximal. Zum Vergleich: Für $f_{\rm G} \cdot T = 0.3$ ergibt sich aufgrund der kleineren Augenöffnung $0.192/0.094 \approx 2.04$ und für $f_{\rm G} \cdot T = 0.5$ ist der Quotient ebenfalls kleiner als beim Optimum: $1.159/0.379 \approx 3.05$. |
Eine noch größere Grenzfrequenz führt zu einem sehr großen Störeffektivwert, ohne dass gleichzeitig die vertikale Augenöffnung in gleicher Weise vergrößert wird. | Eine noch größere Grenzfrequenz führt zu einem sehr großen Störeffektivwert, ohne dass gleichzeitig die vertikale Augenöffnung in gleicher Weise vergrößert wird. | ||
− | '''(2)''' Mit dem Ergebnis aus a) erhält man weiter: | + | '''(2)''' Mit dem Ergebnis aus a) erhält man weiter: |
:$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
10 \cdot {\rm | 10 \cdot {\rm | ||
Zeile 59: | Zeile 59: | ||
− | '''(3)''' Mit dem gegebenen $10 \cdot {\rm lg} \, | + | '''(3)''' Mit dem gegebenen $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ dB$, also $E_{\rm B}/N_0 = 10^4$ hat sich der ungünstigste Störabstand zu $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$ ergeben. Für die ungünstigste Fehlerwahrscheinlichkeit $p_{\rm U} = 10^{\rm -6}$ muss aber $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$ sein. Dies erreicht man, indem man den Quotienten $E_{\rm B}/N_0$ entsprechend erhöht: |
:$$10 \cdot {\rm | :$$10 \cdot {\rm | ||
lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB} | lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB} | ||
Zeile 70: | Zeile 70: | ||
− | '''(4)''' Die obere Schranke für $ | + | '''(4)''' Die obere Schranke für $p_{\rm S}$ ist gleich der ungünstigsten Fehlerwahrscheinlichkeit $p_{\rm U} = \underline {10^{\rm -6}}$. Die untere Schranke liegt bei $\underline {0.25 \cdot 10^{\rm -6}}$, ist also um den Faktor 4 kleiner. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
[[Category:Aufgaben zu Digitalsignalübertragung|^3.3 Kanalverzerrungen und Entzerrung^]] | [[Category:Aufgaben zu Digitalsignalübertragung|^3.3 Kanalverzerrungen und Entzerrung^]] |
Version vom 26. Oktober 2017, 13:07 Uhr
Wir betrachten ein redundanzfreies binäres Übertragungssystem mit folgenden Spezifikationen:
- Die Sendeimpulse sind NRZ–rechteckförmig und besitzen die Energie $E_{\rm B} = s_0^2 \cdot T$.
- Der Kanal ist ein Koaxialkabel mit der charakteristischen Kabeldämpfung $a_* = 40 \, {\rm dB}$.
- Es liegt AWGN–Rauschen mit der Rauschleistungsdichte $N_0 = 0.0001 \cdot E_{\rm B}$ vor.
- Der Empfängerfrequenzgang $H_{\rm E}(f)$ beinhaltet einen idealen Kanalentzerrer $H_{\rm K}^{\rm -1}(f)$ und einen Gaußtiefpass $H_{\rm G}(f)$ mit Grenzfrequenz $f_{\rm G}$ zur Rauschleistungsbegrenzung.
Die Tabelle zeigt die Augenöffnung $\ddot{o}(T_{\rm D})$ sowie den Detektionsrauscheffektivwert $\sigma_{\rm d}$ – jeweils normiert auf die Sendeamplitude $s_0$ – für verschiedene Grenzfrequenzen $f_{\rm G}$. Die Grenzfrequenz ist so zu wählen, dass die ungünstigste Fehlerwahrscheinlichkeit
- $$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
möglichst klein ist. Die ungünstigste Fehlerwahrscheinlichkeit stellt eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit $p_{\rm S}$ dar. Für $f_{\rm G} \cdot T ≥ 0.4$ kann auch eine untere Schranke angegeben werden:
- $${1}/{4} \cdot p_{\rm U}\le p_{\rm S}\le p_{\rm U} \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Themengebiet von Berücksichtigung von Kanalverzerrungen und Entzerrung.
- Zur numerischen Auswertung der Q–Funktion können Sie das folgende Interaktionsmodul nutzen: Gaußsche Fehlerfunktion
Fragebogen
Musterlösung
(2) Mit dem Ergebnis aus a) erhält man weiter:
- $$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}$$
- $$\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left ( {3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$
(3) Mit dem gegebenen $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ dB$, also $E_{\rm B}/N_0 = 10^4$ hat sich der ungünstigste Störabstand zu $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$ ergeben. Für die ungünstigste Fehlerwahrscheinlichkeit $p_{\rm U} = 10^{\rm -6}$ muss aber $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$ sein. Dies erreicht man, indem man den Quotienten $E_{\rm B}/N_0$ entsprechend erhöht:
- $$10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}$$
- $$\Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline { = 1.53 \cdot 10^{-5}} \hspace{0.05cm}.$$
(4) Die obere Schranke für $p_{\rm S}$ ist gleich der ungünstigsten Fehlerwahrscheinlichkeit $p_{\rm U} = \underline {10^{\rm -6}}$. Die untere Schranke liegt bei $\underline {0.25 \cdot 10^{\rm -6}}$, ist also um den Faktor 4 kleiner.