Aufgaben:Aufgabe 4.2: AM/PM-Schwingungen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 28: Zeile 28:
 
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$
 
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$
  
Die Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ sollen hier durch das $[[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt| Gram–Schmidt–Verfahren]] gefunden werden, das im Theorieteil ausführlich beschrieben wurde. Die erforderlichen Gleichungen sind hier nochmals zusammengestellt:
+
Die Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ sollen hier durch das [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt| Gram–Schmidt–Verfahren]] gefunden werden, das im Theorieteil ausführlich beschrieben wurde. Die erforderlichen Gleichungen sind hier nochmals zusammengestellt:
 
:$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
 
:$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
 
s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t}  
 
s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t}  

Version vom 4. November 2017, 10:09 Uhr

AM/PM-Schwingungen

Wir betrachten verschiedene Signalmengen $\{s_i(t)\}$ mit der Laufvariablen $i = 1, \ ... \, M$, die alle in gleicher Weise dargestellt werden können:

$$s_i(t) = \left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$

Die Signaldauer $T$ ist dabei ein ganzzahliges Vielfaches von $1/f_{\rm T}$, wobei $1/f_{\rm T}$ die Signalfrequenz (Trägerfrequenz) angibt.

Für die Skizze beträgt die Dauer der energiebegrenzten Signale jeweils $T = 4/f_{\rm T}$, das heißt, man erkennt jeweils genau vier Schwingungen innerhalb von $T$. Die einzelnen Signale $s_i(t)$ unterscheiden sich in der Amplitude ($A_i$) und/oder der Phase ($\phi_i$). Für die beiden ersten (in der Grafik dargestellten) Signale gilt:

$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm},$$
$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2A \cdot \cos(2\pi f_{\rm T}t + \pi/4) \hspace{0.05cm}. $$

Beschränkt man sich zunächst auf diese beiden Signale $s_1(t)$ und $s_2(t)$, so kann man diese durch die Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ vollständig beschreiben. Diese sind orthonormal zueinander, das heißt, unter Berücksichtigung der Zeitbegrenzung auf $T$ gilt:

$$\int_{0}^{T}\varphi_1^2(t) \, {\rm d} t = \int_{0}^{T}\varphi_2^2(t) \, {\rm d} t = 1 \hspace{0.05cm}, \hspace{0.2cm} \int_{0}^{T}\varphi_1(t) \cdot \varphi_2(t)\, {\rm d} t = 0 \hspace{0.05cm}.$$

Mit diesen Basisfunktionen lassen sich die beiden Signale wie folgt darstellen:

$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) \hspace{0.05cm},$$
$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}. $$

In der Teilaufgabe (7) soll überprüft werden, ob sich alle Signale $s_i(t)$ gemäß der obigen Definition (mit beliebiger Amplitude $A_i$ und beliebiger Phase $\phi_i$) durch die folgende Gleichung beschreiben lassen:

$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$

Die Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ sollen hier durch das Gram–Schmidt–Verfahren gefunden werden, das im Theorieteil ausführlich beschrieben wurde. Die erforderlichen Gleichungen sind hier nochmals zusammengestellt:

$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm mit}\hspace{0.4cm} s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t} \hspace{0.05cm},$$
$$s_{21} = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = \int_{0}^{T}s_2(t) \cdot \varphi_1(t)\, {\rm d} t \hspace{0.05cm},$$
$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t)\hspace{0.05cm}, \hspace{0.2cm} \varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||}\hspace{0.05cm}.$$

Hinweise:

  • Die Aufgabe gehört zum Themengebiet von Kapitel Signale, Basisfunktionen und Vektorräume.
  • Verwenden Sie zur Abkürzung die Energie $E = 1/2 \cdot A^2 \cdot T$.
  • Desweiteren ist die folgende trigonometrische Beziehung gegeben:
$$\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$$


Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.