Aufgaben:Aufgabe 4.5: Theorem der Irrelevanz: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 29: Zeile 29:
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe bezieht sich auf das Kapitel [[]] dieses Buches.
+
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers| Struktur des optimalen Empfängers]] dieses Buches.
* Insbesondere wird hier auf das [[Theorem der Irrelevanz]] Bezug genommen, daneben aber auch auf den [[Optimalen Empfänger für den AWGN–Kanal]].
+
* Insbesondere wird hier auf das [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Das_Theorem_der_Irrelevanz| Theorem der Irrelevanz]] Bezug genommen, daneben aber auch auf den [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Optimaler_Empf.C3.A4nger_f.C3.BCr_den_AWGN-Kanal|Optimalen Empfänger für den AWGN–Kanal]].
 
* Weitere Informationen zu den für diese Aufgabe relevanten Themen finden Sie unter folgenden Links:
 
* Weitere Informationen zu den für diese Aufgabe relevanten Themen finden Sie unter folgenden Links:
# * [[Entscheidungsregeln für MAP– und ML–Empfänger]],
+
# * [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Fundamentaler_Ansatz_zum_optimalen_Empf.C3.A4ngerentwurf|Entscheidungsregeln für MAP– und ML–Empfänger]],
# * [[Realisierung als Korrelationsempfänger bzw. Matched–Filter–Empfänger]],
+
# * [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Implementierungsaspekte|Realisierung als Korrelationsempfänger bzw. Matched–Filter–Empfänger]],
# * [[Bedingte Gaußsche Wahrscheinlichkeitsdichtefunktionen]].
+
# * [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Wahrscheinlichkeitsdichtefunktion_der_Empfangswerte|Bedingte Gaußsche Wahrscheinlichkeitsdichtefunktionen]].
  
 
* Für die Fehlerwahrscheinlichkeit eines Systems $r = s + n$ (wegen $N = 1$ sind hier $s, n, r$ Skalare) gilt
 
* Für die Fehlerwahrscheinlichkeit eines Systems $r = s + n$ (wegen $N = 1$ sind hier $s, n, r$ Skalare) gilt

Version vom 6. November 2017, 16:29 Uhr

Betrachtetes Optimalsystem mit Detektor und Entscheider

Untersucht werden soll das durch die Grafik vorgegebene Kommunikationssystem. Die binäre Nachricht $m ∈ \{m_0, m_1\}$ mit gleichen Auftrittswahrscheinlichkeiten

$${\rm Pr} (m_0 ) = {\rm Pr} (m_1 ) = 0.5$$

wird durch die beiden Signale

$$s_0 = \sqrt{E_s} \hspace{0.05cm},\hspace{0.2cm}s_1 = -\sqrt{E_s}$$

dargestellt, wobei die Zuordnungen $m_0 ⇔ s_0$ und $m_1 ⇔ s_1$ eineindeutig sind. Der Detektor (im Bild grün hinterlegt) liefert zwei Entscheidungswerte

$$r_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} s + n_1\hspace{0.05cm},$$
$$r_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} n_1 + n_2\hspace{0.05cm},$$

aus denen der Entscheider die Schätzwerte $\mu ∈ \{m_0, m_1\}$ für die gesendete Nachricht $m$ bildet. Der Entscheider beinhaltet zwei Gewichtungsfaktoren $K_1$ und $K_2$, eine Summationsstelle und einen Schwellenwertentscheider mit der Schwelle bei $0$.

Betrachtet werden in dieser Aufgabe drei Auswertungen:

  • Entscheidung basierend auf $r_1$ ($K_1 ≠ 0, K_2 = 0$),
  • Entscheidung basierend auf $r_2$ ($K_1 = 0, K_2 ≠ 0$),
  • gemeinsame Auswertung von $r_1$ und $r_2$ ($K_1 ≠ 0, K_2 ≠ 0$).

Die zwei Rauschquellen $n_1$ und $n_2$ seien voneinander unabhängig und auch unabhängig vom Sendesignal $s ∈ \{s_0, s_1\}$. $n_1$ und $n_2$ können jeweils durch AWGN–Rauschquellen (weiß, gaußverteilt, mittelwertfrei, Varianz $\sigma^2 = N_0/2$) modelliert werden. Verwenden Sie für numerische Berechnungen die Werte

$$E_s = 8 \cdot 10^{-6}\,{\rm Ws}\hspace{0.05cm},\hspace{0.2cm}N_0 = 10^{-6}\,{\rm W/Hz} \hspace{0.05cm}.$$

Die Komplementäre Gaußsche Fehlerfunktion liefert folgende Ergebnisse:

$${\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5\hspace{0.05cm},\hspace{1.35cm}{\rm Q}(2^{0.5}) = 0.786 \cdot 10^{-1}\hspace{0.05cm},\hspace{1.1cm}{\rm Q}(2) = 0.227 \cdot 10^{-1}\hspace{0.05cm},$$
$${\rm Q}(2 \cdot 2^{0.5}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.234 \cdot 10^{-2}\hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4) = 0.317 \cdot 10^{-4} \hspace{0.05cm},\hspace{0.2cm}{\rm Q}(4 \cdot 2^{0.5}) = 0.771 \cdot 10^{-8}\hspace{0.05cm}.$$

Hinweise:

  1. * Entscheidungsregeln für MAP– und ML–Empfänger,
  2. * Realisierung als Korrelationsempfänger bzw. Matched–Filter–Empfänger,
  3. * Bedingte Gaußsche Wahrscheinlichkeitsdichtefunktionen.
  • Für die Fehlerwahrscheinlichkeit eines Systems $r = s + n$ (wegen $N = 1$ sind hier $s, n, r$ Skalare) gilt
$$p_{\rm S} = {\rm Pr} ({\rm Symbolfehler} ) = {\rm Q} \left ( \sqrt{{2 E_s}/{N_0}}\right ) \hspace{0.05cm},$$

wobei ein binäres Nachrichtensignal $s ∈ \{s_0, s_1\}$ mit

$$s_0 = \sqrt{E_s} \hspace{0.05cm},\hspace{0.2cm}s_1 = -\sqrt{E_s}$$

vorausgesetzt wird und die zweiseitige Rauschleistungsdichte von $n$ konstant gleich $\sigma^2 = N_0/2$ ist.


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz$ =

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)