Aufgaben:Aufgabe 2.1Z: Zur äquivalenten Bitrate: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/Grundlagen der codierten Übertragung }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Mul…“)
 
Zeile 5: Zeile 5:
  
  
[[Datei:|right|]]
+
[[Datei:P_ID1309__Dig_Z_2_1.png|right|frame|Quellen- und Codersignal]]
 +
Die obere Darstellung zeigt das Quellensignal $q(t)$ einer redundanzfreien Binärquelle mit Bitdauer $T_{q}$ und Bitrate $R_{q}$. Die beiden Signalparameter $T_{q}$ und $R_{q}$ können der Skizze entnommen werden.
  
 +
Dieses Binärsignal wird symbolweise codiert und ergibt das unten gezeichnete Codersignal $c(t)$. Alle möglichen Codesymbole kommen in dem dargestellten Signalausschnitt der Dauer $6 / \rm \mu s$ vor.
 +
Mit der Stufenzahl $M_{c}$ und der Symboldauer $T_{c}$ kann man die äquivalente Bitrate – oder den Informationsfluss – des Codersignals angeben:
 +
:$$R_c = \frac{{\rm log_2} (M_c)}{T_c} \hspace{0.05cm}.$$
 +
Daraus erhält man die relative Redundanz des Codes, wenn man wie hier davon ausgeht, dass die Quelle selbst redundanzfrei ist:
 +
:$$r_c = \frac{R_c - R_q}{R_c}\hspace{0.05cm}.$$
 +
 +
 +
''Hinweis:''
 +
 +
 +
Die Aufgabe bezieht sich auf das [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]] dieses Buches. Bei dem hier betrachteten Übertragungscode handelt es sich um den Bipolarcode zweiter Ordnung, was jedoch für die Lösung dieser Aufgabe nicht von Bedeutung ist.
  
 
===Fragebogen===
 
===Fragebogen===

Version vom 8. November 2017, 16:58 Uhr


Quellen- und Codersignal

Die obere Darstellung zeigt das Quellensignal $q(t)$ einer redundanzfreien Binärquelle mit Bitdauer $T_{q}$ und Bitrate $R_{q}$. Die beiden Signalparameter $T_{q}$ und $R_{q}$ können der Skizze entnommen werden.

Dieses Binärsignal wird symbolweise codiert und ergibt das unten gezeichnete Codersignal $c(t)$. Alle möglichen Codesymbole kommen in dem dargestellten Signalausschnitt der Dauer $6 / \rm \mu s$ vor. Mit der Stufenzahl $M_{c}$ und der Symboldauer $T_{c}$ kann man die äquivalente Bitrate – oder den Informationsfluss – des Codersignals angeben:

$$R_c = \frac{{\rm log_2} (M_c)}{T_c} \hspace{0.05cm}.$$

Daraus erhält man die relative Redundanz des Codes, wenn man wie hier davon ausgeht, dass die Quelle selbst redundanzfrei ist:

$$r_c = \frac{R_c - R_q}{R_c}\hspace{0.05cm}.$$


Hinweis:


Die Aufgabe bezieht sich auf das Grundlagen der codierten Übertragung dieses Buches. Bei dem hier betrachteten Übertragungscode handelt es sich um den Bipolarcode zweiter Ordnung, was jedoch für die Lösung dieser Aufgabe nicht von Bedeutung ist.

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)