Aufgaben:Aufgabe 4.2Z: Achtstufiges Phase Shift Keying: Unterschied zwischen den Versionen
K (Guenter verschob die Seite Zusatzaufgaben:4.2 Achtstufiges Phase Shift Keying nach 4.2Z Achtstufiges Phase Shift Keying) |
|||
Zeile 3: | Zeile 3: | ||
[[Datei:P_ID1998__Dig_Z_4_2.png|right|frame|Signalraumpunkte bei 8-PSK]] | [[Datei:P_ID1998__Dig_Z_4_2.png|right|frame|Signalraumpunkte bei 8-PSK]] | ||
− | Die $M = 8$ möglichen Sendesignale bei 8–PSK lauten mit $i = 0, \ ... \ , 7$ im Bereich $0 ≤ t < T$: | + | Die $M = 8$ möglichen Sendesignale bei 8–PSK lauten mit $i = 0, \ \text{...} \ , 7$ im Bereich $0 ≤ t < T$: |
:$$s_i(t)= A \cdot \cos(2\pi f_{\rm T}t + i \cdot {\pi}/{4}) \hspace{0.05cm}.$$ | :$$s_i(t)= A \cdot \cos(2\pi f_{\rm T}t + i \cdot {\pi}/{4}) \hspace{0.05cm}.$$ | ||
Außerhalb der Symboldauer $T$ sind die Signale $s_i(t)$ alle gleich $0$. | Außerhalb der Symboldauer $T$ sind die Signale $s_i(t)$ alle gleich $0$. | ||
− | In der [[Aufgaben:4.2_AM/PM-Schwingungen| Aufgabe | + | In der [[Aufgaben:4.2_AM/PM-Schwingungen| Aufgabe 4.2]] wurde gezeigt, dass diese Signalmenge durch die Basisfunktionen |
:$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},$$ | :$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},$$ | ||
:$$\varphi_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}$$ | :$$\varphi_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}$$ | ||
− | wie folgt dargestellt werden kann ($i = 0, \ ... \ , 7$): | + | wie folgt dargestellt werden kann ($i = 0, \ \text{...} \ , 7$): |
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}.$$ | :$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}.$$ | ||
Zeile 22: | Zeile 22: | ||
Die Grafik zeigt die Signalraumdarstellung der 8–PSK für das Bandpass–Signal (oben) sowie für das äquivalente Tiefpass–Signal (unten). Man erkennt daraus, dass sich die beiden Darstellungen nur duch die verwendeten Basisfunktionen unterscheiden, wobei $\varphi_1(t)$ in der oberen und der unteren Grafik für unterschiedliche Funktionen steht. In der Tiefpassdarstellung gilt $\varphi_2(t) = j \cdot \varphi_1(t)$. | Die Grafik zeigt die Signalraumdarstellung der 8–PSK für das Bandpass–Signal (oben) sowie für das äquivalente Tiefpass–Signal (unten). Man erkennt daraus, dass sich die beiden Darstellungen nur duch die verwendeten Basisfunktionen unterscheiden, wobei $\varphi_1(t)$ in der oberen und der unteren Grafik für unterschiedliche Funktionen steht. In der Tiefpassdarstellung gilt $\varphi_2(t) = j \cdot \varphi_1(t)$. | ||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]]. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | * Verwenden Sie zur Abkürzung die Energie $E = 1/2 \cdot A^2 \cdot T$. | ||
+ | * Desweiteren ist folgende trigonometrische Beziehung gegeben: $\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$ | ||
''Hinweise:'' | ''Hinweise:'' |
Version vom 9. November 2017, 09:28 Uhr
Die $M = 8$ möglichen Sendesignale bei 8–PSK lauten mit $i = 0, \ \text{...} \ , 7$ im Bereich $0 ≤ t < T$:
- $$s_i(t)= A \cdot \cos(2\pi f_{\rm T}t + i \cdot {\pi}/{4}) \hspace{0.05cm}.$$
Außerhalb der Symboldauer $T$ sind die Signale $s_i(t)$ alle gleich $0$.
In der Aufgabe 4.2 wurde gezeigt, dass diese Signalmenge durch die Basisfunktionen
- $$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},$$
- $$\varphi_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}$$
wie folgt dargestellt werden kann ($i = 0, \ \text{...} \ , 7$):
- $$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}.$$
Die äquivalente Tiefpassdarstellung der Signale $s_i(t)$ lautet nach dem Blockschaltbild in Kapitel 4.3 des Buches „Modulationsverfahren”:
- $$s_{{\rm TP}i}(t)= a_{i} \cdot g_s(t) \hspace{0.05cm}, \hspace{0.2cm}a_{i} = a_{{\rm I}i} + {\rm j} \cdot a_{{\rm Q}i} \hspace{0.05cm}, \hspace{0.2cm}i = 0, ... \hspace{0.1cm} , 7 \hspace{0.05cm},$$
wobei $a_i$ komplexe dimensionslose Koeffizienten sind und die Energie des Sendegrundimpulses $g_s(t)$ im Tiefpassbereich $E_{\it gs}$ beträgt. Im hier dargestellten Fall beschreibt $g_s(t)$ einen Rechteckimpuls, doch kann für $g_s(t)$ auch ein jeder andere energiebegrenzte Impuls verwendet werden.
Die Grafik zeigt die Signalraumdarstellung der 8–PSK für das Bandpass–Signal (oben) sowie für das äquivalente Tiefpass–Signal (unten). Man erkennt daraus, dass sich die beiden Darstellungen nur duch die verwendeten Basisfunktionen unterscheiden, wobei $\varphi_1(t)$ in der oberen und der unteren Grafik für unterschiedliche Funktionen steht. In der Tiefpassdarstellung gilt $\varphi_2(t) = j \cdot \varphi_1(t)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Signale, Basisfunktionen und Vektorräume.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Verwenden Sie zur Abkürzung die Energie $E = 1/2 \cdot A^2 \cdot T$.
- Desweiteren ist folgende trigonometrische Beziehung gegeben: $\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$
Hinweise:
- Die Aufgabe gehört zum Themengebiet von Kapitel Signale, Basisfunktionen und Vektorräume.
- Im Gegensatz zum Theorieteil und zur Aufgabe A4.2 kann hier die Laufvariable $i$ die Werte $0, \ ... \, M–1$ annehmen. Verwenden Sie zur Abkürzung
- $$E = {A^2 \cdot T}/{2}\hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$s_0(t)= A \cdot \cos(2\pi f_{\rm T}t ) = s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm}.$$
Da dieses Signal keinen Sinusteil aufweist, ist $s_{\rm 02} = 0$. Weiter gilt mit der angegebenen Abkürzung:
- $$A = s_{01} \cdot \sqrt{{2}/{T}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} s_{01}=\sqrt{1/2 \cdot A^2 \cdot T} = \sqrt{E}\hspace{0.05cm} \hspace{0.15cm}\underline { = 1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$
(2) Das Signal $s_2(t)$ lautet mit $i = 2$ (beachten Sie, dass die zweite Basisfunktion minus–sinusförmig ist):
- $$s_2(t)= A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{2})= - A \cdot \sin(2\pi f_{\rm T}t )$$
- $$\Rightarrow \hspace{0.3cm} s_{21}\hspace{0.05cm} \underline{= 0}\hspace{0.05cm}, \hspace{0.2cm} s_{22}= \sqrt{E} \hspace{0.05cm} \hspace{0.15cm}\underline {=1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$
(3) Entsprechend den Musterlösungen zu (1) und (2) gilt nun:
- $$s_{51}= s_{52}= - \sqrt{E/2} \hspace{0.05cm} \hspace{0.15cm}\underline { = -0.707 \cdot E^{\hspace{0.05cm}0.5}}$$
- $$\Rightarrow \hspace{0.3cm} s_{5}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - {A}/{ \sqrt{2}} \cdot \cos(2\pi f_{\rm T}t ) - {A}/{ \sqrt{2}} \cdot \sin(2\pi f_{\rm T}t )=$$
- $$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t + \phi_5)\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\phi_5 = -0.75 \cdot \pi \hspace{0.2cm}{\rm bzw.}\hspace{0.2cm}\phi_5 = 1.25 \cdot \pi \hspace{0.05cm}.$$
(4) Richtig sind die Lösungsvorschläge 1 und 3. Dabei gilt folgender Zusammenhang:
- $$\xi_1 (t) = \varphi_1 (t) + {\rm j} \cdot \psi_1 (t)\hspace{0.05cm}.$$
(5) Richtig sind hier die Alternativen 2 und 3. Die Basisfunktion muss energienormiert sein und $\psi_1(t)$ ist wie $\varphi_1(t)$ eine reelle, nicht etwa eine imaginäre Funktion:
- $$\varphi_1 (t) = \psi_1 (t) = \left\{ \begin{array}{c} 1/\sqrt{T} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
(6) Aus dem Tiefpass–Signal $s_{\rm TP0}(t)$ kann auch das Bandpass–Signal $s_0(t)$ berechnet werden. Im Bereich $0 ≤ t ≤ T$ gilt mit dem Ergebnis aus (5):
- $$s_0(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}[s_{{\rm TP}0}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} ] = {\rm Re}[\sqrt{E} \cdot \frac{1}{\sqrt{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} ]= $$
- $$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm},$$
also das gleiche Ergebnis wie in der Teilaufgabe (1). Daraus folgt: Die Energie $E$ bezieht sich auch bei Betrachtung im äquivalenten Tiefpass–Bereich auf das Bandpass–Signal.
Entsprechend gilt für das mit blauem Punkt markierte Signal $s_2(t)$ im interessierenden Bereich:
- $$s_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} ] = $$
- $$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t)- \sqrt{E/T} \cdot \sin(2\pi f_{\rm T}t) ] =$$
- $$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{E/T} \cdot \sin(2\pi f_{\rm T}t) \hspace{0.05cm}.$$
Schließlich kann für das (grüne) Signal $s_5(t)$ im Bereich $0 ≤ t < T$ geschrieben werden:
- $$s_5(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}[\frac{-1 - {\rm j}}{\sqrt{2}} \cdot \sqrt{{E}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} ] = ... = $$
- $$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{\frac{E}{2T}} \cdot \cos(2\pi f_{\rm T}t)+ \sqrt{\frac{E}{2T}} \cdot \sin(2\pi f_{\rm T}t)=$$
- $$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t + 1.25 \cdot \pi) \hspace{0.05cm}.$$
Auch diese Ergebnisse stimmen mit denen der Teilaufgaben (2) bzw. (3) überein. Zutreffend ist also der Lösungsvorschlag 2.