Aufgaben:Aufgabe 4.16: Binary Frequency Shift Keying: Unterschied zwischen den Versionen
Zeile 8: | Zeile 8: | ||
Die Grafik zeigt beispielhafte Signale. In obiger Gleichung gibt $f_{\rm T}$ die <i>Trägerfrequenz</i> an und $\Delta f_{\rm A}$ den <i>Frequenzhub</i> als die maximale Abweichung der [[Augenblicksfrequenz]] von der Trägerfrequenz an. $T$ ist die Symboldauer und $E$ die Signalenergie. Dabei gilt gleichermaßen für die mittlere Symbolenergie und die mittlere Bitenergie: | Die Grafik zeigt beispielhafte Signale. In obiger Gleichung gibt $f_{\rm T}$ die <i>Trägerfrequenz</i> an und $\Delta f_{\rm A}$ den <i>Frequenzhub</i> als die maximale Abweichung der [[Augenblicksfrequenz]] von der Trägerfrequenz an. $T$ ist die Symboldauer und $E$ die Signalenergie. Dabei gilt gleichermaßen für die mittlere Symbolenergie und die mittlere Bitenergie: | ||
− | :$$E_{\rm S} = E_{\rm B} = E\hspace{0.05cm}.$ | + | :$$E_{\rm S} = E_{\rm B} = E\hspace{0.05cm}.$$ |
+ | |||
+ | Meist arbeitet man mit dem <i>Modulationsindex</i>, der als das Verhältnis von Gesamtfrequenzhub und Symbolrate definiert ist: | ||
+ | :$$h = \frac{2 \cdot \Delta f_{\rm A}}{1/T} = 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.05cm}.$$ | ||
+ | |||
+ | Die äquivalente Tiefpassdarstellung führt unter Verwendung von $h$ zu den beiden komplexen Signalen | ||
+ | :$$ s_{\rm TP0}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$ | ||
+ | :$$ s_{\rm TP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm}.$$ | ||
+ | |||
+ | Eine orthogonale FSK liegt vor, wenn das innere Produkt den Wert $0$ ergibt: | ||
+ | :$$< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= | ||
+ | \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t =0 \hspace{0.05cm}.$$ | ||
+ | |||
+ | In diesem Fall ist auch eine nichtkohärente Demodulation wie im Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzensysteme mit nichtkohärenter Demodulation]] beschrieben möglich. | ||
+ | |||
+ | Das innere Produkt der BP–Signale kann aus dem inneren Produkt der TP–Signale ermittelt werden: | ||
+ | :$$< \hspace{-0.05cm}s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= | ||
+ | {\rm Re}\left [ \hspace{0.1cm}< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.15cm} \right ]\hspace{0.05cm}.$$ | ||
+ | |||
+ | Gilt $〈 s_{\rm BP0}(t) \cdot s_{\rm BP1}(t)〉 = 0$, aber gleichzeitig auch $〈 s_{\rm TP0}(t) \cdot s_{\rm TP1}(t)〉 ≠ 0$, so ist zwar eine kohärente Demodulation möglich, aber keine nichtkohärente. | ||
+ | |||
+ | ''Hinweise:'' | ||
+ | * Die Aufgabe beschreibt die im Kapitel 4.4 auf [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Binary_Frequency_Shift_Keying_.282.E2.80.93FSK.29| Seite 8]] und [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Minimum_Shift_Keying_.28MSK.29| Seite 9]] behandelte Thematik. | ||
Version vom 9. November 2017, 19:20 Uhr
Bei der binären FSK werden die beiden Nachrichten $m_0$ und $m_1$ durch zwei unterschiedliche Frequenzen dargestellt. Für die beiden möglichen Bandpass–Signale gilt dann jeweils im Bereich $0 ≤ t ≤ T$ mit $f_0 = f_{\rm T} + \Delta f_{\rm A}$ sowie $f_1 = f_{\rm T} \, – \Delta f_{\rm A}$:
- $$s_{\rm BP0}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{2E/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},$$
- $$ s_{\rm BP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{2E/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm}.$$
Die Grafik zeigt beispielhafte Signale. In obiger Gleichung gibt $f_{\rm T}$ die Trägerfrequenz an und $\Delta f_{\rm A}$ den Frequenzhub als die maximale Abweichung der Augenblicksfrequenz von der Trägerfrequenz an. $T$ ist die Symboldauer und $E$ die Signalenergie. Dabei gilt gleichermaßen für die mittlere Symbolenergie und die mittlere Bitenergie:
- $$E_{\rm S} = E_{\rm B} = E\hspace{0.05cm}.$$
Meist arbeitet man mit dem Modulationsindex, der als das Verhältnis von Gesamtfrequenzhub und Symbolrate definiert ist:
- $$h = \frac{2 \cdot \Delta f_{\rm A}}{1/T} = 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.05cm}.$$
Die äquivalente Tiefpassdarstellung führt unter Verwendung von $h$ zu den beiden komplexen Signalen
- $$ s_{\rm TP0}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$
- $$ s_{\rm TP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm}.$$
Eine orthogonale FSK liegt vor, wenn das innere Produkt den Wert $0$ ergibt:
- $$< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t =0 \hspace{0.05cm}.$$
In diesem Fall ist auch eine nichtkohärente Demodulation wie im Kapitel Trägerfrequenzensysteme mit nichtkohärenter Demodulation beschrieben möglich.
Das innere Produkt der BP–Signale kann aus dem inneren Produkt der TP–Signale ermittelt werden:
- $$< \hspace{-0.05cm}s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= {\rm Re}\left [ \hspace{0.1cm}< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.15cm} \right ]\hspace{0.05cm}.$$
Gilt $〈 s_{\rm BP0}(t) \cdot s_{\rm BP1}(t)〉 = 0$, aber gleichzeitig auch $〈 s_{\rm TP0}(t) \cdot s_{\rm TP1}(t)〉 ≠ 0$, so ist zwar eine kohärente Demodulation möglich, aber keine nichtkohärente.
Hinweise:
Fragebogen
Musterlösung