Aufgaben:Aufgabe 4.17: Nichtkohärentes On-Off-Keying: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 41: Zeile 41:
 
{Input-Box Frage
 
{Input-Box Frage
 
|type="{}"}
 
|type="{}"}
$xyz$ = { 5.4 3% } $ab$
+
$f_{\rm G, \ min} \cdot T \ = \ $ { 0.27 3% }
 +
$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $ { 11.04 3% } $\ \rm dB$
 
</quiz>
 
</quiz>
  

Version vom 9. November 2017, 20:37 Uhr

Rayleigh– und Riceverteilung

Die Abbildung zeigt die beiden Dichtefunktionen, die sich bei einer nichtkohärenten Demodulation von On–Off–Keying ergeben. Dabei wird vorausgesetzt, dass die zwei OOK–Signalraumpunkte bei $\boldsymbol{s}_0 = C$ (Nachricht $m_0$) und bei $\boldsymbol{s}_1 = 0$ (Nachricht $m_1$) liegen.

Die Symbolfehlerwahrscheinlichkeit dieses Systems wird durch die folgende Gleichung beschrieben:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}({\cal{E}}) = $$
$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot \int_{0}^{G} p_{y|m} (\eta | m_0) \,{\rm d} \eta +$$
$$ \hspace{-0.1cm} \ + \ \hspace{-0.1cm} {1}/{ 2} \cdot \int_{G}^{\infty} p_{y|m} (\eta | m_1) \,{\rm d} \eta \hspace{0.05cm}.$$

Mit der Streuung $\sigma_n = 1$, die im Folgenden vorausgesetzt wird, lautet die sich für $m = m_1$ ergebende Rayleighverteilung (blaue Kurve):

$$p_{y|m} (\eta | m_1) = \eta \cdot {\rm e }^{-\eta^2/2} \hspace{0.05cm}.$$

Die Riceverteilung (rote Kurve) kann im vorliegenden Fall (wegen $C >> \sigma_n$) durch eine Gaußverteilung angenähert werden:

$$p_{y|m} (\eta | m_0) = \frac{1}{\sqrt{2\pi}} \cdot {\rm e }^{-(\eta-C)^2/2} \hspace{0.05cm}.$$

Die optimale Entscheidergrenze $G_{\rm opt}$ ergibt sich aus dem Schnittpunkt von roter und blauer Kurve. Aus den beiden Skizzen erkennt man, dass $G_{\rm opt}$ von $C$ abhängt. Für die obere Grafik gilt $C = 4$, für die untere $C = 6$. Alle Größen sind normiert und es wird stets $\sigma_n = 1$ vorausgesetzt.

Hinweise:

$${\rm Q }(1.5) \approx 0.0668\hspace{0.05cm}, \hspace{0.2cm}{\rm Q }(2.5) \approx 0.0062\hspace{0.05cm}, \hspace{0.2cm} {\rm Q }(2.65) \approx 0.0040 \hspace{0.05cm}.$$


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$f_{\rm G, \ min} \cdot T \ = \ $

$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $

$\ \rm dB$


Musterlösung

(1)  (2)  (3)  (4)  (5)