Aufgaben:Aufgabe 1.2Z: Nochmals Lognormal–Fading: Unterschied zwischen den Versionen
Zeile 57: | Zeile 57: | ||
{Berechnen Sie die folgenden Wahrscheinlichkeiten. | {Berechnen Sie die folgenden Wahrscheinlichkeiten. | ||
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(z_2 > 1.0)\ = \ ${ 0.5 3% } | + | ${\rm Pr}(z_2 > 1.0)\ = \ $ { 0.5 3% } |
${\rm Pr}(z_2 > 0.5)\ = \ $ { 0.842 3% } | ${\rm Pr}(z_2 > 0.5)\ = \ $ { 0.842 3% } | ||
${\rm Pr}(z_2 > 4.0)\ = \ $ { 0.023 3% } | ${\rm Pr}(z_2 > 4.0)\ = \ $ { 0.023 3% } | ||
Zeile 64: | Zeile 64: | ||
{Welche Aussagen gelten für die mittlere Empfangsleistung ${\rm E}[P_{\rm E}(t)]$? <br><u>Hinweis:</u> $P_{\rm E}'$ ist die Leistung nach der Multiplikation mit $k_1$ (siehe Grafik). | {Welche Aussagen gelten für die mittlere Empfangsleistung ${\rm E}[P_{\rm E}(t)]$? <br><u>Hinweis:</u> $P_{\rm E}'$ ist die Leistung nach der Multiplikation mit $k_1$ (siehe Grafik). | ||
|type="[]"} | |type="[]"} | ||
− | - Es gilt ${\rm E}[P_{\rm E}(t)] = P_{\rm E}'$. | + | - Es gilt: ${\rm E}[P_{\rm E}(t)] = P_{\rm E}'$. |
− | - Es gilt ${\rm E}[P_{\rm E}(t)] < P_{\rm E}'$. | + | - Es gilt: ${\rm E}[P_{\rm E}(t)] < P_{\rm E}'$. |
− | + Es gilt ${\rm E}[P_{\rm E}(t)] > P_{\rm E}'$. | + | + Es gilt: ${\rm E}[P_{\rm E}(t)] > P_{\rm E}'$. |
</quiz> | </quiz> | ||
Zeile 72: | Zeile 72: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''(1)''' Die Konstante $k_1$ erzeugt den zeitunabhängigen Pfadverlust $V_1 = 60 \ \rm dB$. Daraus folgt: | '''(1)''' Die Konstante $k_1$ erzeugt den zeitunabhängigen Pfadverlust $V_1 = 60 \ \rm dB$. Daraus folgt: | ||
− | :$$k_{\rm 1} = 10^{-V_{\rm 1}/(20\hspace{0.05cm} {\rm dB})} \hspace{0.15cm} \underline{= | + | :$$k_{\rm 1} = 10^{-V_{\rm 1}/(20\hspace{0.05cm} {\rm dB})} \hspace{0.15cm} \underline{= 0.001}\hspace{0.05cm}.$$ |
+ | '''(2)''' Richtig ist nur der <u>zweite Lösungsvorschlag</u>: | ||
+ | *Für die Gaußsche Zufallsvariable $V_2$ sind (theoretisch) alle Werte zwischen $–∞$ und $+∞$ möglich. | ||
+ | *Durch die Transformation $z_2 = 10^{{\it –V_2}\rm /20}$ ergeben sich für die lineare Zufallsgröße $z_2$ nur positive Werte und zwar zwischen 0 (falls $V_2$ positiv ist und bis ins Unendliche reicht) und $+∞$ (sehr große negative Werte von $V_2$). | ||
− | |||
+ | '''(3)''' Die Zufallsgröße $z_2$ kann nur positiv sein. Deshalb ist der WDF–Wert $f_{\rm z2}(z_2)\hspace{0.15cm} \underline{ = 0}$. | ||
− | + | Der WDF–Wert für den Abszissenwert $z_2 = 1$ erhält man durch Einsetzen in die gegebene Gleichung: | |
− | :$$f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}= | + | :$$f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}=\frac {1}{ \sqrt{2 \pi } \cdot \sigma_{\rm S} } \cdot \frac {1}{ C } = |
− | |||
\frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} } \cdot \frac {20\,\,{\rm dB}}{ {\rm ln} \hspace{0.1cm}(10) } | \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} } \cdot \frac {20\,\,{\rm dB}}{ {\rm ln} \hspace{0.1cm}(10) } | ||
\hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$ | \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$ | ||
Zeile 86: | Zeile 88: | ||
Der erste Anteil ist gleich dem WDF–Wert $f_{\it V2}(V_2 = 0)$ und $\rm C$ berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie $z_2 = g(V_2)$ für $V_2 = 0 \ \rm dB$ bzw. $z_2 = 1$. Schließlich erhält man für $z_2 = 2$: | Der erste Anteil ist gleich dem WDF–Wert $f_{\it V2}(V_2 = 0)$ und $\rm C$ berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie $z_2 = g(V_2)$ für $V_2 = 0 \ \rm dB$ bzw. $z_2 = 1$. Schließlich erhält man für $z_2 = 2$: | ||
:$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot | :$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot | ||
− | {\rm exp } \left [ - \frac {{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= | + | {\rm exp } \left [ - \frac {{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot |
− | |||
{\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. $$ | {\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. $$ | ||
− | |||
'''(4)''' Berücksichtigt man den Zusammenhang zwischen $z_2$ und $V_2$, so erhält man: | '''(4)''' Berücksichtigt man den Zusammenhang zwischen $z_2$ und $V_2$, so erhält man: | ||
:$${\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5} | :$${\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5} | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | :$${\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= | + | :$${\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842} |
− | |||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
:$${\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S}) | :$${\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S}) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als $2 \cdot \sigma$, ist aber gleich $Q(2)$: | + | Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als $2 \cdot \sigma$, ist aber gleich ${\rm Q}(2)$: |
:$${\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023} | :$${\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | |||
'''(5)''' Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert $m_{\rm S}$ auf die logarithmierte Empfangsleistung (in $\rm dBm$) bezieht. Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von $P_{\rm S} = 1 \ \rm W$, $V_1 = 60 \ \rm dB$ ⇒ $P_{\rm E}' = 1 \ {\rm \mu W}$ und folgender $V_2$–WDF aus: | '''(5)''' Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert $m_{\rm S}$ auf die logarithmierte Empfangsleistung (in $\rm dBm$) bezieht. Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von $P_{\rm S} = 1 \ \rm W$, $V_1 = 60 \ \rm dB$ ⇒ $P_{\rm E}' = 1 \ {\rm \mu W}$ und folgender $V_2$–WDF aus: | ||
Zeile 110: | Zeile 108: | ||
In der Hälfte der Zeit ist dann $P_{\rm E} = 1 \ \rm \mu W$, während in den beiden anderen Vierteln jeweils gilt: | In der Hälfte der Zeit ist dann $P_{\rm E} = 1 \ \rm \mu W$, während in den beiden anderen Vierteln jeweils gilt: | ||
− | :$$V_{\rm 2}= +10\,\,{\rm dB}: \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\rm \mu W}\hspace{0.05cm},$$ | + | :$$V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\rm \mu W}\hspace{0.05cm},$$ |
− | :$$V_{\rm 2}= -10\,\,{\rm dB}: \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\rm \mu W}\hspace{0.05cm}.$$ | + | :$$V_{\rm 2}= -10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\rm \mu W}\hspace{0.05cm}.$$ |
Der Mittelwert ergibt somit: | Der Mittelwert ergibt somit: |
Version vom 10. November 2017, 12:08 Uhr
Wir gehen von ähnlichen Bedingungen wie in der Aufgabe 1.2 aus, fassen aber nun den rein entfernungsabhängigen Pfadverlust $V_0$ und den Mittelwert $m_{\rm S}$ des Lognormal–Fadings zusammen (der Index S steht für Shadowing):
- $$V_{\rm 1} = V_{\rm 0} + m_{\rm S} \hspace{0.05cm}.$$
Der gesamte Pfadverlust ist dann durch die Gleichung
- $$V_{\rm P} = V_{\rm 1} + V_{\rm 2}(t)$$
gegeben, wobei $V_2(t)$ eine Lognormal–Verteilung mit Mittelwert 0 beschreibt:
- $$f_{V{\rm 2}}(V_{\rm 2}) = \frac {1}{ \sqrt{2 \pi }\cdot \sigma_{\rm S}} \cdot {\rm exp } \left [ - \frac{ V_{\rm 2} ^2}{2 \cdot \sigma_{\rm S}^2} \right ] \hspace{0.05cm}.$$
Das in der Grafik gezeigte Pfadverlustmodell ist für das hier beschriebene Szenario geeignet:
- Multipliziert man das Sendesignal $s(t)$ zunächst mit einem konstanten Faktor $k_1$ und weiter mit einer stochastischen Größe $z_2(t)$ mit der Wahrscheinlichkeitsdichte $f_{\rm z2}(z_2)$, so ergibt sich am Ausgang das Signal $r(t)$, dessen Leistung $P_{\rm E}(t)$ aufgrund des stochastischen Anteils natürlich ebenfalls zeitabhängig ist.
- Die WDF der lognormalverteilten Zufallsgröße $z_2$ lautet für $z_2 ≥ 0$:
- $$f_{z{\rm 2}}(z_{\rm 2}) = \frac {{\rm exp } \left [ - {\rm ln}^2 (z_{\rm 2}) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot z_2} \hspace{0.3cm}{\rm mit} \hspace{0.3cm} C = \frac{{\rm ln} \hspace{0.1cm}(10)}{20\,\,{\rm dB}}\hspace{0.05cm}.$$
- Für $z_2 ≤ 0$ ist diese WDF identisch Null.
Hinweise:
- Die Aufgabe gehört zum Kapitel Distanzabhängige Dämpfung und Abschattung.
- Verwenden Sie folgende Kenngrößen:
- $$V_{\rm 1} = 60\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm} \sigma_{\rm S} = 6\,{\rm dB}\hspace{0.05cm}.$$
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Die Wahrscheinlichkeit, dass eine mittelwertfreie Gaußsche Zufallsgröße $z$ größer ist als ihre Streuung $\sigma$, lautet:
- $${\rm Pr}(z > \sigma) = {\rm Pr}(z < -\sigma) = {\rm Q}(1) \approx 0.158\hspace{0.05cm}.$$
- Außerdem gilt: ${\rm Pr}(z > 2\sigma) = {\rm Pr}(z < -2\sigma) = {\rm Q}(2) \approx 0.023\hspace{0.05cm}.$
- Nochmals zur Verdeutlichung: $z_2$ ist die lineare Fading–Größe, während die Beschreibungsgröße $V_2$ auf dem Zehner–Logarithmus basiert. Es gelten folgende Umrechnungen:
- $$z_2 = 10^{-V_{\rm 2}/20\,{\rm dB}}\hspace{0.05cm}, \hspace{0.2cm} V_{\rm 2} = -20\,{\rm dB} \cdot {\rm lg}\hspace{0.15cm}z_2\hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$k_{\rm 1} = 10^{-V_{\rm 1}/(20\hspace{0.05cm} {\rm dB})} \hspace{0.15cm} \underline{= 0.001}\hspace{0.05cm}.$$
(2) Richtig ist nur der zweite Lösungsvorschlag:
- Für die Gaußsche Zufallsvariable $V_2$ sind (theoretisch) alle Werte zwischen $–∞$ und $+∞$ möglich.
- Durch die Transformation $z_2 = 10^{{\it –V_2}\rm /20}$ ergeben sich für die lineare Zufallsgröße $z_2$ nur positive Werte und zwar zwischen 0 (falls $V_2$ positiv ist und bis ins Unendliche reicht) und $+∞$ (sehr große negative Werte von $V_2$).
(3) Die Zufallsgröße $z_2$ kann nur positiv sein. Deshalb ist der WDF–Wert $f_{\rm z2}(z_2)\hspace{0.15cm} \underline{ = 0}$.
Der WDF–Wert für den Abszissenwert $z_2 = 1$ erhält man durch Einsetzen in die gegebene Gleichung:
- $$f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}=\frac {1}{ \sqrt{2 \pi } \cdot \sigma_{\rm S} } \cdot \frac {1}{ C } = \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} } \cdot \frac {20\,\,{\rm dB}}{ {\rm ln} \hspace{0.1cm}(10) } \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$
Der erste Anteil ist gleich dem WDF–Wert $f_{\it V2}(V_2 = 0)$ und $\rm C$ berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie $z_2 = g(V_2)$ für $V_2 = 0 \ \rm dB$ bzw. $z_2 = 1$. Schließlich erhält man für $z_2 = 2$:
- $$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot {\rm exp } \left [ - \frac {{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot {\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. $$
(4) Berücksichtigt man den Zusammenhang zwischen $z_2$ und $V_2$, so erhält man:
- $${\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5} \hspace{0.05cm},$$
- $${\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842} \hspace{0.05cm},$$
- $${\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S}) \hspace{0.05cm}.$$
Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als $2 \cdot \sigma$, ist aber gleich ${\rm Q}(2)$:
- $${\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023} \hspace{0.05cm}.$$
(5) Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert $m_{\rm S}$ auf die logarithmierte Empfangsleistung (in $\rm dBm$) bezieht. Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von $P_{\rm S} = 1 \ \rm W$, $V_1 = 60 \ \rm dB$ ⇒ $P_{\rm E}' = 1 \ {\rm \mu W}$ und folgender $V_2$–WDF aus:
- $$f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB}) + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.$$
In der Hälfte der Zeit ist dann $P_{\rm E} = 1 \ \rm \mu W$, während in den beiden anderen Vierteln jeweils gilt:
- $$V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\rm \mu W}\hspace{0.05cm},$$
- $$V_{\rm 2}= -10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\rm \mu W}\hspace{0.05cm}.$$
Der Mittelwert ergibt somit:
- $${\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm \mu W}+ 0.25 \cdot 0.1\,{\rm \mu W}+0.25 \cdot 10\,{\rm \mu W}= 3.025\,{\rm \mu W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm \mu W} \hspace{0.05cm}.$$
Diese einfache Rechnung mit diskreten Wahrscheinlichkeiten anstelle einer kontinuierlichen WDF deutet darauf hin, dass der dritte Lösungsvorschlag richtig sein wird.