Aufgaben:Aufgabe 1.3Z: Nochmals Rayleigh–Fading?: Unterschied zwischen den Versionen
K (Guenter verschob die Seite Zusatzaufgaben:1.3 Nochmals Rayleigh–Fading? nach 1.3Z Nochmals Rayleigh–Fading?) |
|||
Zeile 1: | Zeile 1: | ||
− | {{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des | + | {{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}} |
[[Datei:P_ID2107__Mob_Z_1_3.png|right|frame|Zwei Kanäle, jeweils durch den komplexen Faktor <i>z</i>(<i>t</i>) gekennzeichnet]] | [[Datei:P_ID2107__Mob_Z_1_3.png|right|frame|Zwei Kanäle, jeweils durch den komplexen Faktor <i>z</i>(<i>t</i>) gekennzeichnet]] | ||
− | Dargestellt ist der multiplikative Faktor $z(t) = x(t) + j \cdot y(t)$ zweier Mobilfunkkanäle (beide ohne Mehrwegeausbreitung) in 2D–Darstellung. Als gesichert wird vorgegeben: | + | Dargestellt ist der multiplikative Faktor $z(t) = x(t) + {\rm j} \cdot y(t)$ zweier Mobilfunkkanäle (beide ohne Mehrwegeausbreitung) in 2D–Darstellung. Als gesichert wird vorgegeben: |
− | * Der Kanal R (die Bezeichnung ergibt sich aus der Farbe „Rot” der Punktwolke) ist rayleighverteilt mit $\sigma_{\rm R} = 0.5$. | + | * Der Kanal '''R''' (die Bezeichnung ergibt sich aus der Farbe „Rot” der Punktwolke) ist rayleighverteilt mit $\sigma_{\rm R} = 0.5$. |
* Für die Wahrscheinlichkeitsdichtefunktion (WDF) von Betrag $a(t) = |z(t)|$ bzw. Betragsquadrat $p(t) = |z(t)|^2$ gelten somit die folgenden Gleichungen (mit $\sigma = \sigma_{\rm R}$): | * Für die Wahrscheinlichkeitsdichtefunktion (WDF) von Betrag $a(t) = |z(t)|$ bzw. Betragsquadrat $p(t) = |z(t)|^2$ gelten somit die folgenden Gleichungen (mit $\sigma = \sigma_{\rm R}$): | ||
:$$f_a(a) = | :$$f_a(a) = |
Version vom 10. November 2017, 12:55 Uhr
Dargestellt ist der multiplikative Faktor $z(t) = x(t) + {\rm j} \cdot y(t)$ zweier Mobilfunkkanäle (beide ohne Mehrwegeausbreitung) in 2D–Darstellung. Als gesichert wird vorgegeben:
- Der Kanal R (die Bezeichnung ergibt sich aus der Farbe „Rot” der Punktwolke) ist rayleighverteilt mit $\sigma_{\rm R} = 0.5$.
- Für die Wahrscheinlichkeitsdichtefunktion (WDF) von Betrag $a(t) = |z(t)|$ bzw. Betragsquadrat $p(t) = |z(t)|^2$ gelten somit die folgenden Gleichungen (mit $\sigma = \sigma_{\rm R}$):
- $$f_a(a) = \left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm exp} [ -a^2/(2\sigma^2)] \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0 \\ {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\ \end{array} \hspace{0.05cm},$$
- $$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm exp} [ -p/(2\sigma^2)] \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0 \\ {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array} .$$
- Vom Kanal B („Blau”) ist nur die Punktwolke gegeben. Es ist abzuschätzen, ob hier ebenfalls Rayleigh–Fading vorliegt, und wenn JA, wie groß bei diesem Kanal die Kenngröße $\sigma = \sigma_{\rm B}$ ist.
- In der Teilaufgabe 3) wird schließlich auch auf die WDF $f_{\it \phi}(\phi)$ der Phasenfunktion $\phi(t)$ Bezug genommen. Diese ist wie folgt definiert:
- $$\phi(t) = \arctan \hspace{0.15cm} \frac{y(t)}{x(t)} \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Wahrscheinlichkeitsdichte des Rayleigh–Fadings dieses Buches.
- Eine ähnliche Aufgabenstellung wird im Kapitel Weitere Verteilungen des Buches „Stochastische Signaltheorie” behandelt.
Fragebogen
Musterlösung
(2) Durch Vermessen der beiden eingezeichneten Kreise erkennt man, dass beim „blauen” Kanal die Streuungen von Real– und Imaginärteil um etwa den Faktor 1.4 (exakt: Wurzel aus 2) größer sind als beim „roten” Kanal:
- $$\sigma_{\rm B} = \sigma_{\rm R} \cdot \sqrt{2} = 0.5 \cdot \sqrt{2}= {1}/{\sqrt{2}}\hspace{0.15cm} \underline{ \approx 0.707} \hspace{0.05cm}.$$
(3) Richtig ist NEIN. In beiden Fällen beschreibt $f_{\it \phi}(\phi)$ eine Gleichverteilung zwischen $–\pi$ und $+\pi$. Die größeren Amplituden von Kanal (B) spielen für die Phasenfunktion $\phi(t)$ keine Rolle.
(4) Richtig ist der Lösungsvorschlag 2. Bei Rayleigh–Fading sind Realteil $x(t)$ und Imaginärteil $y(t)$ gaußverteilt. Die Exponentialverteilung ergibt sich für das Betragsquadrat $p(t) = |z(t)|^2$.
(5) Richtig ist hier der Lösungsvorschlag 3, wie bereits in der Musterlösung zu (d) begründet.
(6) Der Betrag $a(t)$ ist rayleighverteilt. Somit gilt für die gesuchte Wahrscheinlichkeit.
- $${\rm Pr}(a > A) = \int_{A}^{\infty}\frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2}{2\sigma^2}] \hspace{0.15cm}{\rm d}a \hspace{0.05cm}.$$
In einigen Formelsammlungen findet man die Lösung für dieses Integral, aber nicht in allen. Es gilt aber auch mit der einseitig–exponentialverteilten Zufallsgröße $p = a^2$:
- $${\rm Pr}(a > A) = {\rm Pr}(p > A^2) = \frac{1}{2\sigma^2} \cdot\int_{A^2}^{\infty} {\rm exp} [ -\frac{p}{2\sigma^2}] \hspace{0.15cm}{\rm d}p \hspace{0.05cm}.$$
Dieses Integral ist elementar und liefert das Ergebnis:
- $${\rm Pr}(a > A) = {\rm exp} [ -\frac{A^2}{2\sigma^2}] \hspace{0.05cm}.$$
Richtig ist demnach der Lösungsvorschlag 2.
(7) Für den Kanal (R) gilt mit $\sigma = 0.5$:
- $${\rm Pr}(|z(t)| > 1) = {\rm e}^{-2} \hspace{0.15cm} \underline{ \approx 0.135} \hspace{0.05cm}.$$
In der oberen Grafik auf der Angabenseite entspricht das der Anzahl aller Punkte, die außerhalb des eingezeichneten Kreises liegen, bezogen auf die Anzahl $N = 10.000$ aller Punkte.
Für den Kanal (B) gilt wegen der doppelten Varianz $\sigma^2 = 0.5$ dagegen ${\rm Pr}(|z(t)|>1) = {\rm e}^{\rm –1} \ \underline {\approx \ 0.368}$. Hinweis: Der Bezugskreis hat auch hier den Radius 1. Der im unteren Bild eingezeichnete Kreis hat einen größeren Radius als $A = 1$, nämlich $A \approx 1.41$.