Aufgaben:Aufgabe 2.4Z: Fehlerwahrscheinlichkeiten beim Oktalsystem: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(kein Unterschied)

Version vom 17. November 2017, 10:30 Uhr

„Zufallscodierung” und Graycodierung für das Oktalsystem

Es wird ein Digitalsystem mit $M = 8$ Amplitudenstufen (Oktalsystem) betrachtet, dessen $M – 1 = 7$ Entscheiderschwellen genau bei den jeweiligen Intervallmitten liegen. Ein jeder der gleichwahrscheinlichen Amplitudenkoeffizienten $a_{\mu}$ $(1 ≤ \mu ≤ 8)$ kann nur in die unmittelbaren Nachbarkoeffizienten $a_{\mu–1}$ bzw. $a_{\mu+1}$ verfälscht werden und zwar in beiden Richtungen mit der gleichen Wahrscheinlichkeit $p = 0.01$. Hierzu einige Beispiele:

  • $a_5$ geht mit $p = 0.01$ in den Koeffizienten $a_4$ über und mit der gleichen Wahrscheinlichkeit in den Koeffizienten $a_6$.
  • $a_8$ wird mit der Wahrscheinlichkeit $p$ in den Koeffizienten $a_7$ verfälscht; in anderer Richtung ist keine Verfälschung möglich.


Die Zuordnung von jeweils drei binären Quellensymbolen in einen oktalen Amplitudenkoeffizienten geschieht alternativ entsprechend

  • der zweiten Spalte in der angegebenen Tabelle, die „zufällig” – ohne Strategie – generiert wurde,
  • der Graycodierung, die in Spalte 3 nur unvollständig angegeben und noch zu ergänzen ist.


Angegeben ist der Graycode für $M = 4$. Bei $M = 8$ sind die beiden letzten Binärzeichen an der gestrichelt eingezeichneten Linie zu spiegeln. Für die ersten vier Amplitudenkoeffizienten ist an der ersten Stelle ein L zu ergänzen, für $a_{5}, ..., a_{8}$ das Binärsymbol H.

Für die beiden Zuordnungen „Zufall” und „Gray” sollen berechnet werden:

  • die $\color{red} {\rm Symbolfehlerwahrscheinlichkeit} \ p_{\rm S}$, die in beiden Fällen gleich ist; diese Größe gibt die mittlere Verfälschungswahrscheinlichkeit eines Amplitudenkoeffizienten $a_{\rm mu}$ an,
  • die $\color{red} {\rm Bitfehlerwahrscheinlichkeit} \ p_{\rm B}$ bezogen auf die (decodierten) Binärsymbole.


Hinweis:

Die Aufgabe gehört zum Themenbereich von Redundanzfreie Codierung.

Fragebogen

1

Welchem Amplitudenkoeffizienten $a_{ \mu}$ entsprechen beim Graycode die binären Folgen „LHH” bzw. „HLL”? Bitte Index $ \mu$ eingeben $(1 < \mu < 8)$.

$ \rm {LHH}: \mu \ = \ $

$ \rm {HLL}: \mu \ = \ $

2

Berechnen Sie die Symbolfehlerwahrscheinlichkei

$p_{\rm S} \ = \ $

$\ \%$

3

Berechnen Sie die Bitfehlerwahrscheinlichkeit für den Graycode.

$p_{\rm B} \ = \ $

$\ \%$

4

Berechnen Sie die Bitfehlerwahrscheinlichkeit für den „Zufallscode”.

$p_{\rm B} \ = \ $

$\ \%$


Musterlösung

(1)  Entsprechend der Beschreibung auf der Angabenseite steht „LHH” für den Amplitudenkoeffizienten $a_{3}$ und „HLL” für $a_{8}$.

(2)  Die äußeren Koeffizienten ($a_{1}$ und $a_{8}$) werden jeweils mit der Wahrscheinlichkeit $p = 1 \%$ verfälscht, die $M – 2 = 6$ inneren mit der doppelten Wahrscheinlichkeit $(2p)$. Durch Mittelung erhält man:

$$p_{\rm S} = \frac{2 \cdot 1 + 6 \cdot 2} { 8} \cdot p\hspace{0.15cm}\underline { = 1.75 \,\%} \hspace{0.05cm}.$$

(3)  Jeder Übertragungsfehler (Symbolfehler) hat beim Graycode genau einen Bitfehler zur Folge. Da jedoch jedes Oktalsymbol drei Binärzeichen beinhaltet, gilt

$$p_{\rm B} ={p_{\rm S}}/ { 3}\hspace{0.15cm}\underline { = 0.583 \,\%} \hspace{0.05cm}.$$

(4)  Von den insgesamt sieben möglichen Übergängen (jeweils in beiden Richtungen) führen zu

  • einem Fehler: HLH $\Leftrightarrow$ LLH,
  • zwei Fehlern: HLL $\Leftrightarrow$ HHH, LLL $\Leftrightarrow$ LHH, HHL $\Leftrightarrow$ HLH, LLH $\Leftrightarrow$ LHL,
  • drei Fehlern: HHH $\Leftrightarrow$ LLL, LHH $\Leftrightarrow$ HHL.


Daraus folgt:

$$p_{\rm B} = \frac{p} { 3} \cdot \frac{1 + 4 \cdot 2 + 2 \cdot 3} { 7} = \frac{15} { 21} \cdot p \hspace{0.15cm}\underline { = 0.714 \,\%} \hspace{0.05cm}.$$