Aufgaben:Aufgabe 2.6: Einheiten bei GWSSUS: Unterschied zwischen den Versionen
Zeile 68: | Zeile 68: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Alle Aussagen sind richtig</u>. $\eta_{\rm VZ}(\tau, t)$ ist die zeitvariante Impulsantwort, für die auch die Bezeichnung $h(\tau, t)$ gebräuchlich ist. Wie jeder Impulsantwort hat auch $h(\tau, t)$ die Einheit $[1/\rm s]$. Durch Fouriertransformation der Funktion $\eta_{\rm VZ}(\tau, t)$ bezüglich der Verzögerung $\tau$ kommt man zu |
− | '''(2)''' | + | :$$\eta_{\rm FZ}(f, t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f \tau)\hspace{0.15cm}{\rm d}\tau |
− | + | \hspace{0.05cm}. $$ | |
− | + | ||
− | '''( | + | Durch die Integration nach $\tau$ (Einheit: $\rm s$) ist $\eta_{\rm FZ}(f, t)$, die auch als „zeitvariante Übertragungsfunktion” bezeichnet wird, ohne Einheit. In mancher Literatur wird anstelle von $\eta_{\rm FZ}(f, t)$ auch $H(f, t)$ verwendet. |
+ | |||
+ | Auch die Verzögerungs–Doppler–Darstellung $\eta_{\rm VD}(\tau, f_{\rm D})$ hat keine Einheit. Diese Funktion ergibt sich aus der zeitvarianten Impulsantwort $\eta_{\rm VZ}(\tau, t)$ durch die Fouriertransformation hinsichtlich $t$: | ||
+ | :$$\eta_{\rm VD}(\tau, f_{\rm D}) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f_{\rm D} t)\hspace{0.15cm}{\rm d}t | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | Die Funktion $\eta_{\rm FD}(t, f_{\rm D})$ ergibt sich aus den dimensionalen Funktionen $\eta_{\rm VD}(\tau, f_{\rm D})$ bzw. $\eta_{\rm FZ}(f, t)$ jeweils durch eine Fouriertransformation, was die Einheit $[\rm s] = [1/\rm Hz]$ zur Folge hat. | ||
+ | |||
+ | |||
+ | '''(2)''' Die Autokorrelationsfunktion ist definitionsgemäß der folgende Erwartungswert: | ||
+ | :$$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot | ||
+ | \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm}.$$ | ||
+ | |||
+ | Da die zeitvariante Impulsantwort $\eta_{\rm VZ}(\tau, t)$ die Einheit $[1/\rm s]$ aufweist, hat deren AKF $\varphi_{\rm VZ}$ die Einheit $[1/\rm s^2]$, sowohl mit dem Argument $(\tau_1, l_1, \tau_2, t_2)$ als auch mit dem GWSSUS–Argument $(\tau, \Delta t)$. | ||
+ | |||
+ | Die Diracfunktion $\delta(\Delta \tau)$ hat die Dimension $[1/\rm s]$, da das Integral über alle $\tau$ (mit Einheit $[\rm s]$) den Wert $1$ ergeben muss. Daraus folgt für die Verzögerungs–Zeit–Kreuzleistungsdichte ${\it \Phi}_{\rm VZ}(\tau, \Delta \tau)$ die Einheit $[1/\rm s]$, ebenso für die Verzögerungs–Leistungsdichte ${\it \Phi}_{\rm V}(\tau) = {\it \Phi}_{\rm VZ}(\tau, \Delta t = 0)$. Richtig sind somit bei dieser Teilfrage die <u>Lösungsvorschläge 2 und 3</u>. | ||
+ | |||
+ | |||
+ | '''(3)''' Richtig sind hier die <u>Aussagen 1 und 3</u>. Ausgehend von der Einheit $[1/\rm s]$ der Funktion ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$ kommt man durch Fouriertransformation bezüglich $\tau$ bzw. $\Delta t$ zu den Funktionen $\varphi_{\rm FZ}(\Delta f, \Delta t)$ bzw. ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$. Beide sind dimensionslos. | ||
+ | |||
+ | Das Frequenz–Doppler–Kreuzleistungsdichtespektrum hat die Einheit $[\rm s] = [1/\rm Hz]$, wegen | ||
+ | :$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f_{\rm D} \tau)\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}. $$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Version vom 20. November 2017, 12:04 Uhr
Der Mobilfunkkanal kann in sehr allgemeinen Form durch vier Systemfunktionen beschrieben werden, wobei der Zusammenhang zwischen je zwei Funktionen durch
- die Fouriertransformation bzw.
- die Fourierrücktransformation
gegeben ist.
Wir bezeichnen die Funktionen einheitlich mit $\eta_{12}$. Die Indizes seien wie folgt vereinbart:
- V steht für Verzögerung $\tau$ (Index „1”),
- F steht für die Frequenz $f$ (Index „1”),
- Z steht für die Zeit $t$ (Index „2”),
- D ist die Dopplerfrequenz $f$ (Index „2”).
Der Zusammenhang zwischen den Funktionen ist in der oberen Grafik (gelbe Hinterlegung) dargestellt. Fourierkorrespondenzen sind grün eingezeichnet:
- Der Übergang von einem weiß gefüllten zu einem grün gefüllten Kreis entspricht einer Fouriertransformation.
- Der Übergang von einem grün gefüllten zu einem weiß gefüllten Kreis (Gegenrichtung) entspricht einer Fourierrücktransformation.
Beispielsweise gilt:
- $$\eta_{\rm VZ}(\tau, t) \hspace{0.2cm} \stackrel{\tau, \hspace{0.02cm}f}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm FZ}(f,t)\hspace{0.05cm}, \hspace{0.4cm}\eta_{\rm FZ}(f,t) \hspace{0.2cm} \stackrel{f, \hspace{0.02cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.05cm}.$$
Die hieraus abgeleitete Korrelationsfunktion „$\varphi_{12}$” und das Leistungsdichtespektrum „$\it \Phi_{12}$” werden mit den gleichen Indizes versehen wie die Systemfunktion $\eta_{12}$. Korrelationsfunktionen erkennt man in der unteren Grafik an der roten Schrift und alle Leistungsdichtespektren sind blau beschriftet. Es wird stets vom GWSSUS–Modell ausgegangen.
Betrachten wir hier die Systemfunktion $\eta_{\rm VZ}(\tau, t)$, also die zeitvariante Impulsantwort $h(\tau, t)$. Für diese ergeben sich folgende Beschreibungsgrößen:
- $$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm},$$
- $$\Delta \tau = \tau_2 - \tau_1 \hspace{0.05cm}, \hspace{0.2cm} \Delta t = t_2 - t_1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_{\rm VZ}(\Delta \tau, \Delta t) \hspace{0.05cm}, $$
- $$\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.$$
- $${\it \Phi}_{\rm V}(\tau) = {\it \Phi}_{\rm VZ}(\tau, \Delta t = 0)\hspace{0.05cm}. $$
Hinweis:
- Die Aufgabe gehört zum Kapitel Das GWSUS–Kanalmodell.
Fragebogen
Musterlösung
- $$\eta_{\rm FZ}(f, t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f \tau)\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}. $$
Durch die Integration nach $\tau$ (Einheit: $\rm s$) ist $\eta_{\rm FZ}(f, t)$, die auch als „zeitvariante Übertragungsfunktion” bezeichnet wird, ohne Einheit. In mancher Literatur wird anstelle von $\eta_{\rm FZ}(f, t)$ auch $H(f, t)$ verwendet.
Auch die Verzögerungs–Doppler–Darstellung $\eta_{\rm VD}(\tau, f_{\rm D})$ hat keine Einheit. Diese Funktion ergibt sich aus der zeitvarianten Impulsantwort $\eta_{\rm VZ}(\tau, t)$ durch die Fouriertransformation hinsichtlich $t$:
- $$\eta_{\rm VD}(\tau, f_{\rm D}) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f_{\rm D} t)\hspace{0.15cm}{\rm d}t \hspace{0.05cm}.$$
Die Funktion $\eta_{\rm FD}(t, f_{\rm D})$ ergibt sich aus den dimensionalen Funktionen $\eta_{\rm VD}(\tau, f_{\rm D})$ bzw. $\eta_{\rm FZ}(f, t)$ jeweils durch eine Fouriertransformation, was die Einheit $[\rm s] = [1/\rm Hz]$ zur Folge hat.
(2) Die Autokorrelationsfunktion ist definitionsgemäß der folgende Erwartungswert:
- $$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm}.$$
Da die zeitvariante Impulsantwort $\eta_{\rm VZ}(\tau, t)$ die Einheit $[1/\rm s]$ aufweist, hat deren AKF $\varphi_{\rm VZ}$ die Einheit $[1/\rm s^2]$, sowohl mit dem Argument $(\tau_1, l_1, \tau_2, t_2)$ als auch mit dem GWSSUS–Argument $(\tau, \Delta t)$.
Die Diracfunktion $\delta(\Delta \tau)$ hat die Dimension $[1/\rm s]$, da das Integral über alle $\tau$ (mit Einheit $[\rm s]$) den Wert $1$ ergeben muss. Daraus folgt für die Verzögerungs–Zeit–Kreuzleistungsdichte ${\it \Phi}_{\rm VZ}(\tau, \Delta \tau)$ die Einheit $[1/\rm s]$, ebenso für die Verzögerungs–Leistungsdichte ${\it \Phi}_{\rm V}(\tau) = {\it \Phi}_{\rm VZ}(\tau, \Delta t = 0)$. Richtig sind somit bei dieser Teilfrage die Lösungsvorschläge 2 und 3.
(3) Richtig sind hier die Aussagen 1 und 3. Ausgehend von der Einheit $[1/\rm s]$ der Funktion ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$ kommt man durch Fouriertransformation bezüglich $\tau$ bzw. $\Delta t$ zu den Funktionen $\varphi_{\rm FZ}(\Delta f, \Delta t)$ bzw. ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$. Beide sind dimensionslos.
Das Frequenz–Doppler–Kreuzleistungsdichtespektrum hat die Einheit $[\rm s] = [1/\rm Hz]$, wegen
- $${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f_{\rm D} \tau)\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}. $$